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CHAPTER I. INTRODUCTION 

As communities grow richer, their concerns in depreciating assets 

grow bigger. The speeding up of technology makes for shorter asset 

lives and therefore still higher depreciation costs. In the 

expensively equipped factories of the future, one may reasonably expect 

depreciation to be a big - perhaps the biggest - element in the costs 

of production and service. 

Regulated industries determine their allowed revenues from the 

revenue requirement equation and it can be defined by the following 

equation: 

R.R. = O.E. + T + D + (V - d) X ROR (1) 

Where R.R. is the revenue requirement, O.E. is the operating expense 

less depreciation, T is the taxes, D is the depreciation cost, V is the 

gross valuation of property, d is the accrued depreciation, ROR is the 

rate of return on the rate base (V - d) and (V - d)xROR is the earnings 

allowed on the rate base. Depreciation has a direct impact on 

regulated rates and an indirect influence on revenues. It affects 

revenues as a current operating cost and the accrued depreciation cost 

is subtracted from the value of property in determining the rate base. 

In early 1984, the Bell Operating Companies (BOCs) divested from 

American Telephone & Telegraph Company (AT & T). This divestiture put 

a stop to the monopolistic control AT & T had over the telephone 

industry, but also created more concern over the depreciation reserve 
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deficit in the BOCs. Just before divestiture, AT & T reported its 

estimated depreciation reserve deficiency to be over $26 billion and 

growing at a rate of $2 billion per year [1]. A separate study by the 

United States Telephone Association (USTA) capital recovery committee 

indicates that the telephone industry will only achieve approximately 

29% of reserve level by year 1990. Based on an expected investment 

base of nearly $235 billion by year-end 1990, this would indicate a 

potential deficiency of nearly $40 billion [2]. Depreciation cost 

alone accounts for a large percentage of the industry's revenue 

requirement and in some companies, for example, Illinois Bell Telephone 

company, depreciation cost is the single largest cost.i 

Once the importance of the depreciation estimate is determined, it 

is desirable to understand the process upon which these estimates are 

based. The processes which depreciation estimates are based can be 

generally classified into two distinct procedures: life analysis and 

life estimation. Life analysis is the process of aggregating and 

analyzing the historical record of property for purpose of obtaining 

information about the historical patterns of the retirements of assets. 

Life estimation is based on the results of the life analysis, but 

proceeds one step further by applying considered judgement to the 

results of the life analysis. This represents the application of 

subjective "expert opinion and judgement" to estimate the mortality 

1 Letter from T. L. Cox (v.p. Finance, Illinois Bell) to W. J. 
Tricarico (secretary, FCC), Réf.: 1984 Represcription of depreciation 
rates for Illinois Bell, July 20, 1984. 
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characteristics of the property. 

The traditionally used models of life analysis are Iowa type 

curves, Gompertz-Makeham formula, h-curves, simulated plant records, 

computed mortality, etc. The majority of these models derive service 

lives as a result of estimating the relation of age to the retirements 

of assets. The causes of retirement, often referred to as forces of 

mortality, are broadly categorized as [3]: 

1. physical conditions (wear and tear from use) 

2. functional situations (technological obsolescence) 

3. situations unrelated to the property (management policy) 

Of these causes for retirement of property, physical conditions were 

playing a major role in the retirement of plant in the past. During 

the last few decades, technological obsolescence and competitive 

factors are judged to be dominant forces of mortality. Traditional 

life analysis techniques would just work on the retirement data without 

specifically classifying the causes of retirement. 

Fitch and Wolf [4] identified the need to examine individual 

forces of mortality and conceptualized on how those forces could be 

combined to give better life forecasts. They Introduced the concept of 

statistically combing forces affecting the retirement of property under 

two conditions: 

1. the variation in forces caused by the combination of 

significantly different physical characteristics or property 

located in distinctly different environments. 
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2. the forces of retirement acting in combination, but 

independently, e.g., deterioration, inadequacy, obsolescence 

and chance. 

This technique may be used to estimate the effect of each force of 

mortality on significant vintages when evaluating life analysis or 

modifying them when making life estimation. 

Wolf [5] in particular supported Ocker [6] in the belief that 

technological obsolescence is the key element causing change in force 

of mortality dominating all others in telecommunications industry and 

should thus be studied separated. He identified three steps necessary 

to obtain a life forecast when a particular force is disaggregated. 

For technological obsolescence, he suggested: 

1. the estimation of the effect of all forces except 

technological obsolescence, 

2. forecast of the future rate of technological obsolescence, 

3. the combination of these forces of mortality to yield a 

service life forecast. 

He pointed out that the most critical of the three steps was 

accomplished by reconstructing the life cycles of various technologies. 

White [7] discussed economic forces of retirement and presented 

examples showing how knowledge of those forces can be used to improve 

life forecasting. These economic forces alter the short and long range 

effect of the usual forces of mortality. He described how individual 

forces of retirement affect the overall retirement pattern. If 
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unrecognized, these forces may cause historical analyses to be 

misinterpreted when making life forecasts. 

Dandekar [8] argued that the concepts of the retirement rate being 

a function of age, as used In some traditional life analysis 

techniques, might have to be augmented to a more extended concept that 

not only relates the retirement rate to age but also to chronological 

time. He presented an overview of the product life cycle concepts and 

their use in the area of capital recovery. A generalized model for the 

investment life cycle is developed and tested against data from five 

different technologies. From these models, standard life cycle curves 

have been generalized. 

Kateregga [9] discussed the need for technological forecasting as 

an input to life studies with the telecommunication industries as a 

particular case study. It was recommended that the normal and the 

Gompertz growth models be considered along with the Fisher-Pry model by 

those Industries presently considering the Implementation of 

substitution analysis in their life estimations. It was suggested that 

when substitution analysis is used in life estimation, the life cycle 

forecasts derived from the analysis be used as an additional constraint 

to future experience before service life indications are derived. 

Fitch, Wolf and Bissinger [10] stated in there preface to "The 

Estimation of Depreciation" that: 

The effect of advances in technology, technological 
forecasting, life cycle costing and life cycle depreciation 
are current topics related to depreciation which need to be 
incorporated in life estimation studies. 
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This new dimension of life analysis will, more appropriately, account 

for the technological and obsolescence factors leading to retirement. 

In a technology driven environment, a depreciation estimate which is 

based on traditional life analysis results in a decelerated rate of 

capital recovery. This time pattern of technological growths models 

ne^s to be incorporated into the life analysis framework especially in 

those industries experiencing fast technological changes. 

Technological forecasting in life analysis is based on the premise 

that, if one can forecast not only the onset of data, but also the 

pattern of development of particular technologies, then one can 

estimate better the lives of affected equipment. 
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CHAPTER II. TECHNOLOGICAL FORECASTING METHODS 

Technological forecasting methods are tools which are used for 

planning and decision making in order to obtain insight on the future 

of a technology, group of technologies or undiscovered technologies, 

and their direction of change and advance over the longer time. There 

are various definitions of technological forecasting. One of the 

earliest pioneers, Lenz [11], has described it as follows: 

Technological forecasting may be defined as the prediction of 
the invention, characteristics, dimensions, or performance of 
a machine serving some useful purpose. The qualities sought 
for the methods of prediction are explicitness, quantitative 
expression, reproducibility of results, and derivation on a 
logical basis. 

The definition given by Bright [12] is as follows: 

Technological forecasting is a quantified prediction of 
timing and of the character or the degree of change of 
technical parameters and attributes associated with the 
design, production, and use of devices, materials, and 
processes, according to a specified system of reasoning. 

Jantsch [13] defined the technological forecasting as the 

probabilistic assessment on a relatively high confidence level of 

future technology transfer. Landford [14] defined the technological 

forecasting as the prediction or determination of the feasible to 

desirable characteristics of performance parameters in future 

technologies. A widely accepted definition of technological 

forecasting has not been formulated to date. One reason that a single 

definition has been elusive is that various researchers see different 

meanings in different disciplines. As a result, some of the terms 
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associated with the technological forecasting might not have consistent 

meaning across various areas. The term of technological forecasting 

within life analysis has come to mean the forecasting of process from 

birth to death of a product. Methods of technological forecasting have 

historically been broken down into three categories:- subjective 

assessment, exploratory, and normative methods [13, 15, 16, 17, 18]. 

Subjective Assessment Methods 

Subjective assessment methods are not generally based on 

quantitative inputs. This group of methods depends largely on one or 

more experts who are knowledgeable in the specific technology or 

technical area under consideration to assess the future. 

Low effort intuitive 

This group of technological forecasting methods include techniques 

which make use of the knowledge of experts without using any eleUaorate 

framework to obtain the experts' forecasts. Examples of these methods 

are brainstorming sessions, visionary forecasts, or simply asking 

individuals who are experts in their field what they expect to happen 

in the future. Certron and Monohan [19] and Markridakis et al. [16] 

described considerable merits in a forecast made by a single individual 

who is expert in his special area. 

The best known technique is brainstorming and is well described by 

Ayres [20]. This method consists of group meetings conducted under a 
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set of simple rules designed to created an environment conductive to 

freewheeling speculation, such as the following: 

• focus on a single well-defined problem, but 

• consider any idea, regardless of apparent relevance or 

feasibility, 

• do not criticize any idea, 

• do not explore the implications of idea. 

Chambers [21] explained another typical low effort intuitive 

forecasting method called visionary forecasts: 

A prophecy that uses personal insights, judgement and, when 
possible, facts about different scenarios of future. It is 
characterized by subjective guesswork and imagination; in 
general, the methods used are non-scientific. It requires a 
set of possible scenarios about the future prepared by a few 
experts in light of past events. 

One problem with the use of expert judgement is determining who 

are real experts. According to Helmer [22] there are three basic rules 

which should be followed when dealing with expert judgement: 

• the experts must be selected wisely, 

• the proper conditions under which they can perform most ably 

must be created, 

• if several experts forecast a particular subject, considerable 

caution must be used in deriving a single combined position. 

The primary advantages of low effort intuitive forecasts are that 

they are simple, usually cheap to produce, and frequently they can be 

made quickly and easily. The main disadvantage is their heavy reliance 

on intuitive opinions and the lack of quantitative data. In any case. 
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it is usually best to start with a low effort intuitive forecast and 

then use the more complex and costly technological forecasting methods 

when needed. 

High effort intuitive 

This group of technological forecasting methods includes 

techniques which make use of formal frameworks. Examples of these 

methods include polls and panels, Delphi technique, and cross impact 

analysis, each of which provide a framework for obtaining, combining 

and presenting the combined forecasts which are obtained from multiple 

experts. Chambers [21] discussed high effort intuitive techniques 

stating that: 

The objective here is to bring together in a logical, 
unbiased, and systematic way all information and judgements 
which relate to the factors being estimated. Such techniques 
are frequently used in new technology areas, where 
development of a product idea may require several inventions, 
so that R&D demands are difficult to estimate, and where 
market acceptance and penetration rates are highly uncertain. 

Ayres [20] clearly explained the reason why higher effort 

intuitive forecasting methods are needed: 

If a certified forecasting genius is available, of course, 
there is nothing more needed. If, however, either the genius 
of the certification is in question - which is normal - the 
modern tendency is to rely instead on an opinion poll or a 
panel of experts. 

The use of panels or polls is an attempt to use simple averages to 

obtain a reliable forecast. Frequently the poll or panel uses 

interactions among the participants in order to obtain a group 
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consensus. One of the best known methods to develop a group consensus 

Is the Delphi technique which is explained very concisely by Helmer and 

Rescher [23]: 

The Delphi technique eliminates committee activity altogether 
thus further reducing the influence of certain psychological 
factors, such as specious persuasion, the unwillingness to 
abandon publicly expressed opinions, and the bandwagon effect 
of majority opinion. This technique replaces direct debate 
by a carefully designed program of sequential individual 
interrogations (best conducted by questionnaires), 
interspersed with information and opinion feedback derived by 
computer consensus from the earlier parts of the program. 

This technique involves the use of a questionnaire asking selected 

experts in many fields the approximate time period they expect the 

specified events to occur. A systematic solicitation of expert opinion 

works toward a consensus by the use of sequential interrogations. 

Following receipt of the responses to the first survey, the individual 

or organization conducting the survey prepares a second questionnaire 

providing results of the first survey, and asking individual who 

provide responses outside the interquartile range (the middle fifty per 

cent of response) to give reasons why their answers depart from the 

response obtained in the first round. The third round of the survey 

provides all participants with the justification or reasoning behind 

the extreme answers - i.e., those answers at either end of the 

distribution for the time frame being considered. The fourth round 

gives all participants an opportunity to consider the reasons given for 

extreme positions and participants are asked for one last opinion. 
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The cross-Impact analysis was devised by Gordon [24] and Helmer 

[25], subsequent to their original Delphi study. It arose from an 

objection to the Delphi technique, that the experts were expected to 

concentrate on one event at a time, and might not be able to take into 

account the interactions among the events they were forecasting. This 

method requires determination of the potential impact of one of the 

forecasted events on each of the other forecasted event. The following 

set of steps for this analysis are modifications of those originally 

outlined by Rochberg et al. [26]: 

1. Select one of the forecasted events to be compared and 

subjectively determine the original probability of 

occurrence. 

2. Assuming the occurrence of the first event, assign 

probabilities of occurrence to the other forecasted events, 

taking into account the enhancement or inhibition effects of 

the first event. 

3. Perform a similar exercise on each event, with the 

assumption that the presently being considered event is now 

the first event and the probabilities of each of the other 

events determined should this first event (each in its turn) 

occur. 

4. Continuing this process until all events in the set have 

been decided. 



www.manaraa.com

13 

5. By computer application, compute the matrix many times to 

compute probabilities based on the number of times or 

percentage of times that an event occurs during these 

repeated exercises. 

6. Changing the initial probability of one or more events and 

repeating steps 2 through 5. 

Through application of these procedures, an analyst can develop a set 

of probabilities that adequately represents the interaction between a 

number of different events, each of which is uncertain. 

Exploratory Methods 

Exploratory methods begin with the past and present as their 

starting point and project the future in a heuristic manner, often 

looking at all available possibilities. 

Trend extrapolation methods 

This group of technological forecasting methods includes various 

techniques which make use of historical data in order to construct a 

trend which is then extended or extrapolated into the future. Trend 

extrapolation methods assume that: 

1. those forces which created the prior pattern of progress 

will be more likely to continue than to change, 

2. those forces are more likely to extend the previous pattern 

of progress than to produce a different pattern. 
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The more Important techniques for trend extrapolation methods are 

graphical trend extrapolation, curve fitting, substitution models, 

envelope curves, and analogy methods. The shape of the trend curves 

can be taken any one of various curves Including the exponential growth 

curve, the life cycle curve which Is an S-curve which has leveled off, 

or straight line growth curves. 

Curve fitting Is a methodology commonly used as a quantitative 

forecasting technique, but It Is also an approach that can be 

effectively used as a technological forecasting method. Many different 

shapes of curves can be used In fitting historical data for 

technological forecasting. One of the most frequently used forms Is 

that of the S-curve. This curve Implies a slow start, a steep growth, 

and then a plateau that Is characteristic of many technological 

capabilities. This shape of curve Is often used In depicting the 

product life cycle. It Is a difficult problem to determine which form 

of curve will best fit the available data and give an accurate 

forecasting for the future. 

Substitution models show graphically or mathematically how one 

technology replaces another (or multiple) competitive technologies. 

This method assumes that if one product or technology exhibits a 

relative superior in performance over the established or conventional 

product or technology, it will eventually substitute for the product or 

technology of lesser performance. An excellent description of using 

substitution models can be found in Llnstone and Sahal [27]. 
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Envelope curves are constructed by combining the individual trend 

curves of various competing technologies over time. Ayres [20] 

described the rational of the envelope curves as: 

The justification for this notion, in brief, is that the past 
performance of the system is fairly likely to be a good model 
for Its future performance; i.e., the system stimulates 
Itself. One would expect this to be true, as long as, and to 
the extend that, there is no radical change in the 
environment. In this light, it is plausible to expect the 
amount of creative work - which is equivalent to, or closely 
related to, the rate of invention - from year to year to 
Increase (or decrease) relatively steadily and gradually, 
rather than fluctuating sharply up and down. This 
characteristic rate of change is, of course, the slope of the 
envelope. 

The envelope curve then represents a cumulative curve which can then be 

extrapolated to show where potential future technologies may appear in 

the future. 

Analogy methods attempt to compare historical patterns with 

existing situations in order to forecast future progress. The concept 

of an analogy between biological and other kinds of growths has 

recently been applied to such phenomena as the growth pattern of 

particular technologies, transportation speeds, the life cycle of 

Individual products, and the growth of government spending [28]. When 

data points are plotted and the curve follows the S shaped pattern, 

forecasters may choose to use a relationship or formula developed for 

use in some other discipline for predicting future data points. 
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Trend correlation methods 

This group of technological forecasting methods includes the 

various techniques which make use of correlations of trends in :rder to 

forecast a variable based upon the behavior of other related variables. 

In order to use two or more trends to determine a third, the forecaster 

must have available a number of primary trends which are related to the 

technical field of interest. To these he must add a knowledge of 

probable relationships that might arise from combinations of such 

variables. The forecaster may then select the relationship and the 

primary variables which influence the desired technical improvement. 

The trends of the primary variables may be projected on the basis of 

any techniques which appear appropriate. The prediction is then 

completed by projecting the unknown variable on the basis of the 

relationship between the primary variables. Examples of these 

techniques include precursor events, correlation analysis, and 

econometric models. 

Precursor events and leading indicators are used when a 

relationship is known or believed to exist between the variable being 

predicted and the leading variables. By following the leading variable 

or precursor event, the variable can be forecasted based upon the 

leading-lagging relationship. In the past, it was believed that only 

technical progress could serve as a precursor. Research indicated that 

economic, political, and social factors may also serve as precursors. 

Although it is difficult to determine precursive indicators, the 
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discovery o f  one adds to the confidence of the forecaster in his 

overall results. 

Correlations, regressions and multiple regressions models make use 

of a known or believed casual relationship between the variables. Once 

the correlations or regression models are determined, the variable can 

be forecasted based upon the behavior of related variables. It is most 

desirable that all factors which have a bearing on the outcome be 

considered, and that any relationships among them which are known a 

priori be defined in advance. 

Econometric models are usually large, complex regressions models 

which can often be used to provide information on the general economy. 

This information can then be used or correlated with the variable being 

predicted in order to forecast the future of the variable. Chambers 

[21] explained as: 

Econometric models are a system of interdependent regression 
equations that describe some sector of the economic sales or 
profit activity. The parameters of the regression equations 
are usually estimated simultaneously...due to the system of 
equations inherent in such models, they will better express 
the causalities involved than an ordinary regression equation 
and hence will predict turning points more accurately. 

Frequently in technological forecasting, it is desired to forecast 

a technology or a progress without a long or any history and often 

causal relationships are not known. This makes the application of 

trend correlation methods nearly impossible and requires the use of 

other methods. 
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Normative Methods 

This group of methods includes various models which are used to 

explore what the future potential success of a technology or a goal 

will be given the various assumptions used to construct the models. 

These models also allow experimentation with the assumptions in order 

to test their affects on the potential success of model. The more 

important models for normative methods are scenarios, gaming, relevance 

trees, morphological analysis, and simulations. 

Scenarios take a well defined set of assumptions, then develop the 

process of constructing multiple future situations, the paths to get to 

each of these situations, and the comparative analysis of the success 

of the particular technology being forecasted relative to other 

competing technologies. Each scenario consists of a picture of a 

plausible future situation including all relevant environmental 

assumptions. These alternative scenarios are described by Bright [29] 

as: 

The alternative scenario concept is to construct a number of 
possible futures and to plan future action only after 
considering all these scenario that represent possible 
futures. The forecaster or planner does not insist on 
identifying the most probable events but uses scenarios that 
include significant differences. Scenarios, therefore, 
should be developed to span a wide range of changes, not only 
in technological areas but also in economic, political, 
social, and other conditions. 

Bright [29] added that forecaster should develop plans under each 

alternative scenario and then compare the separate plans to see where 

they are similar and where they are different. Then the final plan 
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developed should be tested In each scenario to see how well the plan 

survives each scenario. Multiple scenarios (often three) are 

frequently used as the base assumptions in other technological 

forecasting, i.e., Delphi, trend analysis, and simulation models. Much 

of works on scenarios have been developed by Kahn [30]. 

A technique that is very similar to that of scenarios in concept 

is gaming or role playing. Ayres [20] described the technological 

forecasting method of gaming: 

...in which each participant is asked to play a specific 
role in a scenario. The initial conditions only may be 
specified in advance, or an outline of the further action may 
be provided. The participants may be allowed to play their 
parts quite freely, or under severe constraints (the rules of 
the game), depending on the purpose of the exercise. 

A refinement of the scenarios is the relevance tree. The 

principle in relevance tree analysis is to define an objective and 

hierarchy of tasks, systems, and technologies that need upgrading to 

achieve that objective. They are developed by evaluating the relative 

importance of each element of this tree against explicit, quantified 

criteria and a specific scenario, at progressively lower levels. 

Morphological analyses are used when the system or process can be 

broken down into parts which can be treated independently with several 

solutions or approaches to each part and where there are no 

hierarchical relationships. Zwicky and Wilson [31] described five 

basic steps that constitute the morphological analysis as: 

1. The problem must be explicitly formulated and defined. 
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2. All parameters that may enter Into the solution must be 

identified and characterized. 

3. A multidimensional matrix (the morphological box) containing 

all parameters identified in step 2 must be constructed. 

This matrix will contain all possible solutions 

(combinations). 

4. All solutions of the morphological box should be examined 

for their feasibility, and analyzed and evaluated with 

respect to the purposes which are to be achieved. 

5. The best solutions identified in step 4 should be analyzed 

(possibly through an additional morphological study) as to 

the feasibility of carrying them out with available 

resources. 

Like relevance trees, morphological analyses involve a large number of 

alternatives, all of which must be assessed and evaluated. This 

process requires considerable human and computer resources. 

Simulation models are primarily mathematical models which attempt 

to imitate the future environments of the technology in order to 

investigate, experiment with, and compare the success of the 

technologies under study. The use of simulations in industry started 

with Forrester [32]. His approach was initially called the Industrial 

Dynamic model and has evolved into very useful methods with which to 

study a technology or group of technologies. The goals of this method 

are: 

• To develop a better understanding of time-varying behavior. 
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• To show Interrelationships among the major aspects o£ a 

system. 

• To help predict the future course of an existing system. 

• To help improve the prospects for the future. 

Simulations models are often used to predict future probabilities under 

various assumptions. They require an explicit model structure and 

usually operate with very dynamic interactions in the process leading 

to the forecasts. 
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CHAPTER III. OBJECTIVES OF STUDY 

The subject of this study is the application of the technological 

forecasting methods to the process of life analysis. It has been 

observed that a similarity exists between the behavior of biological 

growth and the pattern of technological growth that has some upper 

limit. Some analysts prefer to employ a particular form of the growth 

model for all technological growth patterns and other analysts may 

prefer to employ mathematical transformations of these models. But no 

method has been developed to determine the best model. 

The major objectives of this study are as the following: 

1. To study technological growth models and to develop a 

technique that allows the analyst to select the best model 

as technological forecasting method for the data under 

examination. 

2. To incorporate the time pattern of technological growth into 

the life analysis framework, the more recent data points 

should have a greater Influence on parameter estimation than 

the data that occur at the early part of the growth model. 

3. To develop a methodology to find the remaining life and the 

required accumulated depreciation of embedded plant based on 

technological growth models. 
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CHAPTER IV. OVERVIEW OF GROWTH MODELS 

The technological forecasting methods are frequently grouped to 

explain and predict the future growth in functional capability of some 

specific technology. Many trend extrapolation methods and techniques 

are being developed to forecast technological growth. However, only 

limited attempts have been made to apply quantitative methods to real 

life data patterns. One of the quantitative forecasting techniques in 

the realm of technological forecasting methods is curve fitting 

utilizing the growth models. The term growth model refers to a plot 

over time of some capability or characteristic of a particular 

technology. It is generally believed that this curve, plotted on 

arithmetic scales, reflects a slow start followed by exponential 

growth, and then levels off against some upper limit produced by nature 

or technical capabilities. This pattern of growth results in, what is 

termed, an S shaped curve with respect to time. 

Several qualitative attempts have been made to justify the analogy 

between technological growth and biological growth with some form of an 

upper limit. In particular, Lenz and Landford [33], who have performed 

much research in the realm of technological growth curves, linked the 

biological growth to technological growth and arrived at the same 

formulations. In addition to the simple visual recognition of an S 

shaped growth curve, several researchers [12, 34] have tried to justify 

the growth pattern in technology. 
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"Slow Initial growth" The new technology emerges slowly at 

the onset partially due to little involvement by too few 

people, minimal preliminary scientific knowledge, and 

engineering obstacles which must be overcome. There may be a 

lack of scientific and technical understanding, and it may 

take time to overcome conventional wisdom and erroneous 

assumptions about the phenomena involved. Contract 

arrangements for the old technology are still in force and can 

not be violated. There are also production diseconomies due 

to small scale and problems of financing, developing, and 

installing. Consumers postpone acceptance in anticipation of 

changes in quality and price and there is a low elasticity of 

supply of the new technology. Lakhani [35] discussed the 

effect of the age distribution of existing capital stock on 

the rate of growth during this stage. Since new processes 

usually require new capital equipment, firms with relatively 

old equipment would be prompt in accepting the new technology. 

The speed of take-off the new technology will then be 

determined by that age distribution. Mansfield [36] studied 

the effect of the age distribution relationship in the 

railroad industry and found that the older the steam 

locomotives (i.e., old technology) of the firm, the faster the 

diesel locomotives (i.e., new technology) were adopted. 
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"Exponential growth" Once some of these preliminary obstacles 

have been overcome, the growth of the technology begins to 

follow an exponential pattern. Once understanding and proof 

of the technology's capabilities have been attained, funds and 

researchers are made available to the technology. The product 

has become accepted and production processes Improved. 

Economies of scale have set in with consequential reduction in 

prices. New contracts have been made and the learning process 

ended. The quality of the process has surpassed that of the 

older technology and the information gap between producers and 

consumers has been bridged. The bandwagon effect has begun. 

The efforts are applied not only to the pure research behind 

the technology, but also to the refinement and employment of 

that technology in an engineering environment. 

"Leveling off" Finally, the technological advances cease to 

accelerate and even to grow. Growth itself may halt due to 

the exhaustion of technical opportunities for further 

advances, the point of diminishing returns in cost, effort, 

and usefulness may have been met, or perhaps the physical 

limits of the technology itself may cause the asymptotic 

behavior of the growth curve. In this latter stage of 

development, the product has essentially exploited its scale 

economies, it has matured and is no longer changing rapidly. 

But probably the most critical limitation is the virtual 
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circulation of the available market. A new product could be 

introduced as a substitute at this time, not only forcing the 

growth to stop, but also initiating a decline phase. 

Various growth models have been proposed to represent the time pattern 

of technological growths. For practical purpose, these curves 

classified by the degree of skewness: symmetric growth models and non-

synunetric growth models. 

Symmetric Growth Models 

The Pearl growth curve 

Some researchers observed a similarity between the pattern of 

biological growth and the growth in the performance capability of a 

particular technology. The original work done on the biological growth 

curve was performed as early as 1838 by a Belgian mathematician, P. F. 

Verhulst [37]. Some species of animals and some bacterial cultures 

were observed to grow rapidly at first when placed in a limited 

environment with ideal conditions of food supply and space for their 

initially few numbers, and then to grow slowly as the population 

approaches a point where there was pressure on available resources. It 

was rediscovered and popularized by Pearl and Reed [38] about 1920. 

Pearl [37] made extensive studies on the growth behavior of organisms, 

e.g., the rate of increase of fruit flies within a bottle, the rate of 

increase of yeast cells in a given environment, and the rate of cell 

increase in white rats. He described the mathematical function of his 
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results by what has become known as the Pearl growth curve or the 

logistic curve. 

The equation of this curve is, 

where 

Y = the technological variable being achieved at time t, 

L = the upper limit to that technological capability, 

t = the value of time, 

a, 0  ( a ,  0  >  0 )  =  the parameters of the model. 

In this equation, a and 0 are parameters which control the shape of the 

growth curve. The value of g determines the steepness of the 

exponential growth portion, while the value of the a determines the 

position of the curve on the time (t) axis. The curve has an initial 

values of zero at time t = and reaches the limiting value L at time 

t = +*. By setting the second derivative of Y with respect to time 

equal to zero, it can be shown that the inflection point of the curve 

occurs at t = (In a)/p, where Y = L/2. The curve is symmetric with 

respect to the inflection point and is presented in Figure 1. 

The Fisher-Pry model 

One of the well-known growth models available in technological 

forecasting models is the Fisher-Pry model, which is sometimes used in 

substitution analysis. Fisher and Pry [39] explained a technology as a 
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FIGURE 1. Pearl growth curve 

set of substitution processes and showed that substitutions tend to 

proceed exponentially in the early years, and to follow an S shaped 

curve. The model based on three assumptions: 

1. many technological advances can be considered as competitive 

substitutions of one method of satisfying a need for 

another, 

2. if a substitution has progressed as far as a few percent of 

the total consumption, it will proceed to completion, 

3. the fractional rate of fractional substitution of new for 

old is proportional to the remaining amount of the old left 

to be substituted. 
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They created a model in which the substitution proceeds at a rate 

determined by the formula. 

Y = 5 [1 + tanh o(t - to)] (3) 

where 

Y = fraction of growth of the technology, 

tanh = hyperbolic tangent function, 

a = half of the annual fractional growth in the early years, 

to - the time in which the new technology captures 50 

percent of the usage or Y =1/2. 

A more convenient form of the above substitution expression is. 

. - '•> (4) 
1 - Y 

The mathematical derivation of this model is given in Appendix A. 

Such a model is appropriate for advancing technology which 

exhibits a relative improvement in performance over the older 

technology. The appropriate measure of the technology is the 

percentage of take-over. Lenz and Landford [33] demonstrated that 

predictions of take-over may be made when a technology showing superior 

performance has substituted for as little as 2 % of the total market. 

This model can be derived from the Pearl growth curve, but there exist 

some differences in the fit due to the estimation procedure. The 

algebraical derivation is provided in Appendix B. In the case of the 
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Fisher-Pry model, the dependent variable is the ratio of Y/(l - Y). 

After this form of the model has fitted, it is transformed to give Y. 

Since the Pearl growth curve fits Y directly, the two resultant curves 

are not identical. 

The Mansfield-Blackman model 

Perhaps the seminal work in the modelling of the process by which 

a new product substitutes for an existing product is due to Mansfield 

[40]. He was able to illustrate that the growth in the number of users 

of an innovation can be approximated by a logistic curve by analyzing 

four disparate industrial sectors: railroads, coal, steel, and 

breweries. The key assumption behind Mansfield's model is that the 

probability that a firm will introduce a new technique is an increasing 

function of the proportion of firms already using it and the 

profitability of doing so, but a decreasing function of the size of the 

investment required. 

Blackman [41] made a revision in Mansfield's model by modifying 

the definition of substitution. He defined the substitution process in 

terms of market share captured by the new technology, rather than in 

Mansfield's terms of the accumulative numbers of firms which employed 

the new technology. Blackman believed that the motivating force behind 

the creation of technological innovation is the economic reward which 

is perceived to result from successful innovations. The extent of 

investment in technological innovation is, therefore, related to the 
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perceived rate at which a market will develop for a new technology, and 

the rate of market development is a function of technological 

substitution. He applied his model to describe the dynamics of 

innovation in the commercial jet engine market [42] and in the electric 

utility and automotive sectors [43]. 

The Mansfield-Blackman model is, 

In ( ̂  Y ) = In (-ïTT^) + o(t - t,) (5) 

where 

Y = market share captured at time t by new innovations, 

L = upper limit of market share which the new innovation 

can capture in the long run, 

Yg = market share captured when t = tj, 

a = constant which governs substitution rate, 

t^ = the time in which the innovation first captures 

a portion of the market. 

If gg a In [Yo/(L - Y^)] - at^ and 0 ^  a a ,  then equation (5) can be 

rewritten as, 

in ( ̂ % ) = 00 + 0 , t  ( 6 )  

Note that the Mansfield-Blackman model is simply the Fisher-Pry model 

when the upper limit L is set to 1. For this reason, it will not be 

treated as a separate model. 
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The Bass model 

Bass [44] developed a somewhat different approach to the 

introduction of new products concerned with the development of a theory 

explaining the timing of a the initial purchase of new products for 

consumer durables. He pointed out that Haines [45], Faurt and Woodlock 

[46], and others have suggested growth models for new brands or new 

products which assumed exponential growth to some asymptote. Bass, 

however, postulated a growth of sales to some peak and then a leveling 

off of sales at some level less than the peak, indicating that 

replacement sales began to dominate. 

Two key assumptions behind this model of purchasing behavior are: 

• Initial purchases of the product (or technology) are made by 

both innovators and imitators. Innovators are not influenced 

in the timing of their initial purchase by the number of 

people who have already bought the product, while imitators 

are influenced by the number of previous buyers. 

• The importance of innovators will be greater at first but will 

diminish monotonically over time. 

Bass proposed the growth model to utilize the derivative dy/dt, rather 

than deal with the cumulative form of the model: 

S(t) = pro + (q -p)Y(t) - 3[Y(t)]' (7) 

where 

S(t) = the predicted sales at time t. 
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Y(t) = the cumulative sales of consumer durables in time 

interval (0,t), 

m = the market potential for first time purchasers, 

p = the coefficient of innovation, 

q = the coefficient of imitation to reflect the word-of-

mouth communication between adopters. 

This model is based on the Pearl growth curve and the derivation of the 

Bass model from the logistic function is given in Appendix C. 

Nevers [47] tested the applicability of Bass's model to four 

different sectors of the economy: retail service, industrial durables, 

agricultural durables, and consumer durables. He found that the model 

generated rather accurate predictions of the general time path of 

product and technological adoptions in these sectors based on the role 

of Innovators and imitators in adoptive behavior. Heeler and Hustad 

[48] reported a dramatic improvement in the quality of forecasting by 

constraining the value of m (i.e, the market potential for first time 

purchasers) to an intuitive estimate. The methodology used by those 

authors was based on a modification of the routine developed by Eide 

and Ness [49], which employed an iterative estimation procedure based 

on prespecified levels of m. 
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Non-symmetric Growth Models 

The Gompertz growth curve 

An another growth growth curve that has been employed extensively 

in technological forecasting is the Gompertz curve [50], named after 

Benjamin Gompertz, who originally proposed the Gompertz curve as a law 

governing mortality rates. The mathematical form of this curve is, 

Y = L-e"®'® (8) 

where 

Y = the technological variable being achieved at time t, 

L = the upper limit to that technological capability, 

t = the value of time, 

G, k (G, k > 0) = the parameters of the model. 

Similar to the Pearl growth curve, the Gompertz growth curve ranges 

from zero at t = -« to L at t = +». By setting the second derivative 

of Y with respect to time equal to zero, in contrast to the Pearl 

growth curve whose inflection point occurs at L/2, the point of 

inflection occurs at t = (In G)/k, where Y = L/e. The curve is not 

symmetric with respect to the inflection point and can be seen in 

Figure 2. 
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FIGURE 2. Gompertz growth curve 

Floyd model 

Floyd [51] wished to develop a means of analyzing historical 

technological growth and to forecast growth trends in improved 

functional capability (i.e., the ability of technology to carry out its 

function). This capability is translated in "figures of merit" which 

serve as the dependent variables (e.g., thrust to weight and thrust to 

rate of fuel consumption for aircraft engines, efficiency of energy 

conversion, or inventory requirements). His "figures of merit" 

analysis is based on three requirements: 

• an ultimate limit can be calculated or estimated, 

• the competitive technology limit can be estimated, and 
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• at least two data points on figures of merit and time be 

available. 

Floyd assumed that there is a fixed number of techniques that can be 

tried to accomplish a specific goal and that only a fraction of these 

will be successful. As implied in the requirements, there is an upper 

limit to the functional capability which will be reached only after all 

the possible techniques have been tried. His model can be summarized 

as, 

P(ï. t> . 1 - e«P[ il'Til'-'lVil ] 

where 

P(Y, t) = probability of achieving figure of merit level Y 

by time t, 

L - limiting value of figure of merit, 

Y - level of figure of merit for new technology, 

Yg = level of figure of merit for competitive 

technology, 

Cj, C; = constants, 

t = time, 

F = (1 - Yc/L)/(1 - Y/L). 

Sharif and Uddin [52] developed a procedure for adapting available 

mathematical models for forecasting technological substitution and 

revised the Floyd model as. 

^  L  -  Y  ̂  *  L - Y  =  +  C a t  (10) 
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where 

L » upper limit of the market share, 

Y = market share of a substitute product at time t, 

Ci/ Cj = constants. 

In this form, it can be seen that the Floyd model is a modification of 

the Mansfield-Blackman model. The term L/(L - Y) has been inserted to 

allow for a time-decreasing coefficient of delay, whereas the 

Mansfield-Blackman assumes that this coefficient of imitation is time-

invariant. Sharif and Uddin suggested the following procedures: 

1. Use Blackman's model to forecast the market share if the 

value of maximum market share can be reasonably ascertained. 

Otherwise go to step 2. If Blackman's model is used, plot a 

set of curve by taking a range of values instead of just one 

value for the anticipated maximum possible market share. Go 

to step 4. 

2. Use Fisher's model and Floyd's model (with L = 1.0) to 

obtain a range of feasible forecasts. 

3. Plot a set of curves, within the region obtained in step 2, 

using Fisher's curve as the stem and branching off at 

different points with decreased values of the rate of growth 

of substitution. 

4. Identify the most likely forecast based on judgment with due 

consideration to the environmental factors that may 

influence the rate of growth of substitution to change over 

time. 
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The Sharif and Kabir model 

Sharif and Kabir [53] developed a generalized mathematical model 

for forecasting technological substitution under a wide variety of 

circumstances. The Floyd model gives an underestimation of the 

forecast, while the Mansfield-Blackman and Fisher-Pry models give an 

overestimation of the forecast [52]. Since it is likely that the 

correct estimation lies between these two extremes, Sharif and Kabir 

suggested that the models of Floyd and of Mansfield-Blackman be 

linearly combined, as follow: 

In < L ! Y ^ L - Y ) = Cl + Cjt (11) 

when 

G = 1, the Floyd model results, 

0 = 0, the Mansfield-Blackman model results, 

0 = 0  a n d  L  =  1 ,  t h e  F i s h e r - P r y  m o d e l  i s  e v o k e d .  

The term L/(L - Y) is labelled a delay factor and a is termed the 

delay coefficient. Since a can be take a value between zero and one, a 

set of smoothed S shaped curves can be obtained, ranging from the most 

optimistic to the most pessimistic forecast. 

The Weibull growth curve 

The Weibull distribution bas been found experimentally to describe 

industrial property mortality characteristics, such as, vacuum-tube 

failures [54] and ball-bearing failures [55]. This distribution is 
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named after its conceiver, Waloddi Weibull [56], who derived it in an 

analysis of the yield strength of a Bofors steel, the length of 

Cyrtoideae, the fatigue life of a St-37 steel and others. To a lesser 

extent, the Weibull distribution has been used to study biological 

phenomena, such as, the response to stress. For example, Peto et al. 

[57] describe "age specific cancer induction rate" with a Weibull 

distribution. Sharif and Islam [58] proposed the empirical Weibull 

growth curve as a general model for technological forecasting as 

follow: 

Y = L - L-e ° (12) 

where 

w = a threshold or shift parameter, 

a (a > 0) = a scale parameter, 

H (j3 > 0) = a shape parameter, 

L = a upper limit. 

For technological growth cases, the upper limit L is taken to be any 

desired value less than or equal to unity. The Weibull probability 

density function (p.d.f.) and its cumulative distribution function 

(c.d.f.) for different values of a and g are shown in Figure 3 and 

Figure 4. 

It can be seen that a and & together determine the steepness of 

the curve, while alone determines the shape of the curve. Changing 
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0.5 

f(t) 

F(t) 

FIGURE 3. Weibull p.d.f. and its c.d.f. for different value of a when 
(3 = 3 
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f<t) 

F(t) 

4 = 5 

0.0 

FIGURE 4. Welbull p.d.f. and Its c.d.f. for different value of 0 when 
a = 4 
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the value of a merely squeezes or broadens the curve, thus, just 

changes the scale on the horizontal axis, and not the basic shape of 

the curve. When 0 is 1, the Welbull distribution reduces to the 

negative exponential distribution. When 0 is 2, it reduces to the 

Raylelgh distribution and at values of 3<fi<i it approximates the normal 

distribution. Depending on the value of g, the Welbull curve becomes 

left skewed, symmetrical, or right skewed, in a way, 0 is similar to 

the delay coefficient in the Sharif and Kabir model, thus, the Welbull 

curve effectively models technological forecasting for a wide variety 

situations. 

In order to determine a suitable technological growth model, an 

overview of the growth models that have been suggested in literature. 

As can be observed from Table 1, the selection of a model for 

technological growth forecasting has an implicit relationship with the 

selection of the point of inflection of the S shaped curve. 
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TABLE 1. Growth models and their inflection points 

fraction of the upper limit 
model expression when inflection occurs 

Pearl Y = — rr 0.5 
1 * ae*" 

nsber-Pty ' 0.5 

Mansfield- In ( ^ y)=0o+Pit 0.5 
Blackman 

• -G-e'kt 
Gompertz Y = L-e 0.368 

Floyd In ^ y)i^ Il ygc^+c^t 0.333 

Sharif- In ( ^ v)+G(, ^ „)=Ci+C2t 0.5, o=0.0 
Kabir ^ ~ ̂  ^ ~ ^ 0.382, :=0.5 

0.333, 0=1.0 

Weibull Y=L-L'e 0.5, 0=3.2814 
0.333, 0=1.6814 
0.368, 0=1.8424 
0.632, 0=12.000 



www.manaraa.com

44 

CHAPTER V. ESTIMATION OF GROWTH MODELS 

Choosing an appropriate growth model to represent a set of data 

points may be a difficult task. There exists a broad group of growth 

curve models as seen in the previous chapter. But the selection of the 

best curve is only a part of the eventual solution for modeling and 

forecasting the data. What also needs to be determined is the 

appropriate fitting procedure of the growth curve to the data. 

In order to fit any curve to a set of data points, one needs an 

estimation procedure. One of the most commonly employed method is 

termed least squares estimation. This statistical procedure finds the 

best fitting curve for a given set of data points by minimizing the sum 

of the squared deviations of the observed data points from those 

predicted by the fitted curve. The procedure called ordinary least 

squares is a fitting procedure that weights all squared deviations 

equally for all data points. For some sets of data points, an unequal 

weighting procedure may be deemed appropriate. For example, if the 

observations are time series data, one may wish to give more weight to 

recent observations and discount older observations. In this way» one 

may guard against possible parameter changes through time. 

Ordinary Least Squares 

Any statistical model combines both deterministic and stochastic 

elements. Thus, a general form is. 

6^), i = l,...,n (13) 
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where 

= the dependent or response variable, 

Xj = the vector o£ independent variable, 

0 = the vector of population parameters which determines 

the mathematical relationship between and , and 

= the stochastic element of error. 

When an additive error structure is assumed, after any new necessary 

transformation, the above equation can be rewritten as, 

Y^ = f(Xj, p) + ,j, i = l,...,n (14) 

Then f(Xi, 0 )  becomes the deterministic element of the model, and e, is 

interpreted as the stochastic element. 

In practice, the vector 0, is unknown and can be estimated from 

historical data of the variable being modelled. To perform this 

estimation process, the method of least squares is often used. The key 

concept behind this technique is the reduction of residuals (or the 

errors) by minimizing the sum of squares of the deviation of observed 

values from the estimated values, 

n : 
S ( 0 )  = Z [Yj - f(Xj, 0 ) ]  (15) 

i=l 

where 5(0) is the sum-of-squares function. 

When this function is minimized, the vector b, the least squares 

estimator of 0, is determined. Two important properties for an 
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estimator are unblasedness and efficiency. An estimator is unbiased if 

its expected value is equal to the value of the parameter. This means 

that for all possible samples of size n, the mean value of the 

estimates obtained would be equal to the value of the parameter. Even 

though an estimator is unbiased, an estimate from one set of 

observations will in general not be exactly equal to the population 

parameter because sampling error is introduced when all observations of 

the population are not included in the estimation process. An 

estimator is efficient if it has the minimum variance among all 

estimators in its class. Again if all possible estimates from all 

possible saunples could be obtained, the variance of the estimator is a 

measure of the dispersion of the distribution of these estimates. A 

minimum variance is desired because an estimate obtained from the 

sample actually observed would generally be close to an estimate 

obtained from any other sample which could have been selected. From 

this vector b, it can be calculated, 

Yi = f(Xj, b) (16) 

which becomes an estimate of the expected value of the dependent 

variable. The resulting error is given by the residuals which can be 

denoted as, * 

Gj = Yj - Y i  (17) 
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Linear least squares 

The linear model may be written as, 

= X'/J + «j, i = l,...,n (18) 

where 

Yj = the dependent variable, is continuous, 

X = the matrix of Independent variables, which are considered 

fixed and measures without error, is nxp and of full rank, 

& = the vector of p unknown parameters, and, 

= the stochastic elements known as the error terms, are 

usually assumed to be Independent and identically 

distributed <i.e.,>-i.i.d.) random variables as well as often 

assumed to be normally distributed with mean zero and 

variance , or N(0, a^). 

Five assumptions are necessary for the least squares estimators to 

be B.U.L.E. (Best Linear Unbiased Estimator) and to rely upon the t-

test or normal distributions for confidence Intervals. These 

assumptions are as follows: 

1. Normality: e, is normally distributed. 

2. Zero mean: E(€j) = 0. 

3. Homoscedastlcity: Var(£^) = p:. 

4. Nonautocorr elation : E(6^,e^) = 0, for i * j. 

5. Nonstochastic X: X^ is a nonstochastic variable with values 

fixed in repeated samples. 

The following theoretical effects may exist if violations occur: 
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Non-normality of error term If the assumption that the 

disturbance is normally distributed is violated, the least squares 

estimators of the linear model are still B.L.U.E., since this property 

is independent of the form of the parent population. This means that 

even without the assumption of normality, the least squares estimators 

are unbiased and have the smallest variance among all linear unbiased 

estimators of the respective parameters; however, they are no longer 

efficient. The confidence intervals depend crucially on the assumption 

of normality. Without the assumption of normality, the least squares 

estimators are not normally distributed in small samples, and the 

confidence limits no longer apply. 

Non-zero expected value of error term If the relationship 

between the independent variables and dependent variable has not been 

correctly specified, the mean disturbance may be non-zero. 

Heteroscedasticity of error term When the assumption of 

constant variance is violated, the distributions and expectations of 

the least squared estimates for the coefficients do not change. They 

are still linear and unbiased estimators with the property of 

consistency. The problem arises in the estimation of the variance of 

these coefficient estimates. If we assume a constant variance of e, 

when, in fact, the variance changes for different observations, then we 

are not making use of all the possible information. This is an 

indication that the estimators are not efficient. That is, the 

variances of the coefficients determined through the ordinary least 
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squares method are greater than variances determined by some other 

estimating procedure which uses the additional information about the 

changing variance of the disturbance term. Heteroscedasticity often 

causes the ordinary least squares estimator of the variance for the 

coefficients to be biased downward, i.e., the estimated value of the 

standard error of an estimated coefficient is lower than it would be 

otherwise [59]. The effect of this downward bias is that the t and F 

statistics used for testing the significances of the coefficients will 

be overstated. 

Autocorrelation of error term Violation of the assumption of 

independent error terms arises frequently when time series data are 

used, especially if the time interval between observations is small. 

With this violation of the autocorrelation, the ordinary least squares 

estimators are affected by misrepresentation of the varlance-covariance 

matrix of disturbances. Baillie [60] showed through mathematical 

computation that by ignoring autocorrelation the usual ordinary least 

squares estimate of the variance of the error term would be biased and 

would generally underestimate the true prediction of the mean squared 

error. He supported this result by simulations in which 

autocorrelation is Ignored when estimating the models by ordinary least 

squares method. The mean square error of the correct model is then 

compared with the mean square error of the simulated models and found 

to be consistently lager. The bias In the estimate of the standard 

error of the coefficient is downward if the autocorrelation Is positive 

and upward if the autocorrelation is negative. 
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Contemporaneous correlation When the assumption of 

Independence between the independent variable and the error term is 

violated, the estimates of the coefficients of the li.near model are 

biased. The problem of contemporaneous correlation is most often 

linked with either error in measurement of the Independent variable or 

with simultaneity of the relation between the dependent and Independent 

variable. One of the major problems of errors in measurement or 

simultaneity is that the disturbance term becomes a composite of two or 

more different errors and the total error variance cannot be decomposed 

unambiguously. It may be a random error associated with the 

specification plus an error of measurement. Even in large samples 

where the relevant sampling moment approaches the true variance, this 

true covariance is still nonzero and the bias remains. The estimates 

of the parameters do not have the property of consistency. 

The sum of squares of deviations from the true linear 

relationship, using the above assumptions, becomes, 

n ; 
S ( 0 )  = Z e, 

1=1 

n , 
= Z [Yj - y,] (19) 
1=1 

In order to minimize this function, 1 )  can be differentiated with 

respect to the vector 0 and set equal to zero; an exact answer to these 

questions can be found since normal equations are linear. The 

resultant matrix of normal equations is. 



www.manaraa.com

51 

b = (%'X)"^.(X'Y) (20) 

where E(b) = 0 and Var(b) = a2'(X'X)-i [61], 

Nonlinear least squares 

If the model being fitted Is not linear in Its parameters and can 

not be rendered linear by a transformation, then the estimation of the 

parameters becomes a more difficult task. The general nonlinear model 

is given by the equation, 

Yj = f(Xj, /}) + gj, i = l,...,n (21) 

where 

Yj = the dependent variable for the ith of n observations, 

Xj = a row vector of scores for p independent variable, 

0 = the vector of p unknown population parameters, and 

ej = the error for the ith observation, which is i.i.d., 

M(0, 02). 

Under the assumption of normally and identically distributed 

independent errors, the general nonlinear model in equation (21) has 

likelihood, 

L(/3, aO = (2)ra2)" ' ̂exp[- S(/3)] (22) 

where S ( 0 )  is the sum-of-squares function, such as. 

S(f) = Z [Y, - f(Xj, p)]' 
1=1 

(23) 
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As in the case of the linear model, the likelihood is maximized when 

the function of S(0) is minimized. To derive estimating equations for 

the nonlinear model, differentiate S(P) with respect to the vector 0, 

-  f ( X j ,  0 ) ]  (24) 

Setting these partial derivatives to zero and replacing the unknown 

parameters p with the estimator b, produce the nonlinear least squares 

normal equations. Because the estimating equations (24) arising from a 

nonlinear model are In general themselves nonlinear, their solution is 

often difficult. If it is not possible to solve algebraically, 

iterative methods are then employed in most cases [62]. There are 

several methods for obtaining nonlinear least squares estimate, such 

as, steepest descent method [63], Gauss-Newton method [64], and the 

Marquardt's compromise method [65]. 

One of the assumptions for the nonlinear model is that the error 

terms, *. 1.1.d. N(0, o^), as well as, being additive in the model; 

this implies that the error terms have equal variances and are 

uncorrelated. According to Draper and Smith [62], growth data do not 

always satisfy the least squares assumptions. With such time series 

data, there is little reason to believe a priori that the error terms 

are uncorrelated. The closer in proximity of the time the two data 

points occur, the greater the likelihood for positive correlation. 
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IC the assumption of homoscedasticlty Is rejected, the method of 

weighted least squares can be applied in an attempt to alleviate the 

problem. The observations are divided into subgroups and s 2 of each 

subgroup is used as an estimate for a'. Then the original observations 

within each group are weighted inversely according to the standard 

error of estimate for that group. 

If the assumption of autocorrelation is rejected, the Cochran and 

Orcutt's least squares method [66] can be used to transform the data so 

as to reduce the autocorrelation present in the data. 

Discounted Least Squares Method 

The difficulty with the ordinary least squares method, whether 

linear or nonlinear, is the assumption that all data are equally 

weighted. When modelling time series data, this assumption will 

probably be deemed inappropriate. In addition, the assumption of the P 

being constant throughout time may also be inappropriate. As time 

progresses, it may be the case that the relationship between Y and X 

may be shifting, such that 0 is no longer constant. Gilchrist [67] 

referred to this situation as a local model in contrast to a constant 

global model. When dealing with such data, the equal weighting of the 

data may be no longer sensible. 

If the assumption is made that the model being employed is only 

locally constant so that parameter changes are permissible, more weight 

could be given to recent observations, and the past observations could 
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be discounted. This reasoning motivated Brown [68] to consider a 

discount factor In the least squares criterion. In discounted least 

squares or general exponential smoothing, the parameter estimates are 

determined by minimizing, 

The constant w (0 < w 3 1) is a discount factor that discounts past 

observations exponentially. Brown suggested that w be chosen such that 

0.70 < w" < 0.95, where m is the number of estimated parameters in the 

model. If w is small, more weight is given to the more recent 

observations and the information from previous periods is heavily 

discounted. If w is set to one, the solution to the minimization 

problem becomes the normal equations of the ordinary least squares 

problem. 

Once w has been specified, a nonlinear least squares methods can 

be utilized to minimize the function. The equation (25) can be 

rewritten as, 

D(/3) = Z w""' [Yj - f(Xj, 0)i 
1=0 

,2 
(25) 

n-1 
D(p) = Z [w 

1=0 

( a '  i  )  /  1  (  a  -  t  )  /  I  
f(Xj, 0)] 

,2 

(26 )  

where yt(n-i) / 2 is inserted inside the residual term and treated as a 

constant. That is, the same nonlinear least squares method can be 

employed using Y* = wc " -1 ̂ / 2 «Y and f"(Xj, &) = yi( n- i ) / 2 .f (x^, /3). 
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CHAPTER VI. SELECTION OF GROWTH MODELS 

The various forms of the growth curves that are presently employed 

in the technological forecasting methods were reviewed in Chapter Four 

by the degree of skewness. It was demonstrated that some of the models 

are mathematical transformations of one another. 

Since many growth models have formulations with exponential 

functions, logarithmic transformations are used to linearized these 

curves. For example, the deterministic form of the Pearl growth curve 

can be transformed to obtain the Fisher-Pry and the Bass error free . 

models and can be converted into a linearized function. For the 

Gompertz curve, the log of the negative log, -lni-ln(Y/L)], would 

result in a linearized function. For the Welbull curve, the log of the 

negative log, ln{-ln[(L-Y)/L]}, would also result in a linearized 

function. But the addition of the stochastic element, e(t), to the 

deterministic form of these models results in different error structure 

and, therefore, different growth models. The calculation of variance 

for a simple model is not a difficult task. For a linearized growth 

model, however, an approximate technique is employed to calculate the 

variance. 

Error Structure of Growth Models 

If the general linear model is given, 

Y = Po + (27) 

where X - (m, cO, 
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then, knowing Var(X) = o*, one can solve for the variance of Y, 

Var(Y) = Pi:.[Var(X)] 

= z'0% (28) 

This approach can not be used when Y is a nonlinear function of X. 

However, If Y = g(X} Is specified, using the Taylor series expansion 

[69], Y can be rewritten as. 

g(X) = g ( u )  + (X-M)g'(M) + jCX-m)'g"(M) 

+ ••• + -^(X-w) g (u) + ... (29) 

where g"(w) Is the nth derivative and is evaluated at m. Taking the 

expectation of g(X), 

E[g(X)] = g(M) + ^"(M)E(X-/i) remainder (30) 

where E(X-m) = 0, and E(X-W): = Var(X) = O*, 

then, equation (30) can be rewritten as, 

E[g(X)] = g(M) + + remainder (31) 

The variance can be specified as, 

Var[g(X)] = E{g(X) - E[g(X)]} 

= E[g2(X)] - (E[g(X)]}' (32) 

2 
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from equation (29), 

9*(X) = 9'(w) + {[g'(w)] + g(w)g"(#)}(X-w)'+ remainder 

and 

E[g:(X)] = gî(a) + {[g'(w)]^+ g(w)g"(w)}o: + remainder, 

g:(w) + ̂ [g:(w)]"o: + remainder 

Hence, 

Var[g(X)] = gHu) + j[g2(iu)]"a» 

- [g(w) + 5g"(M)a2]2 + remainder, 

= {jCg^ (m) ]" - g(w)g"(w)} +remainder 

from equation (33), 

[g'(M)]^= %[g2(ff)]" - g(w)g"(w) 

So, 

Var(Y) = Var[g(X)] 

s ai '[g'(m)]^ 
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This implies that if the mean and variance of X are known, then the 

variauice of Y, which is a nonlinear function of X, can be approximated 

by the variance of X times the sequence of the derivative of g(X} when 

evaluated at u* This approximation technique for calculating the 

variance of Y can be applied to the six growth curves that were 

selected by the degree of skewness and the transformation of the 

functions: the Pearl growth curve, the linearized Fisher-Pry model, 

the Gompertz growth curve, the linearized Gompertz growth curve, the 

Weibull growth curve, and the linearized Weibull growth curve. 

Pearl growth curve 

If the Pearl growth curve is specified as, 

y(t) = ^ — + ,(t) (38) 
1 + ae P 

where 

6(t) - i.i.d. M(0, 02), 

then E[Y(t)] = l/[l+exp(-0t)] and Var[Y(t)] = Var[e(t)] = a^. This 

result indicates that the variance of the observed Y(t) is constant 

over time. 

Linearized Fisher-Pry model 

If the linear version of the Fisher-Pry model is specified as, 

U(t) a In (^ - Y(t)^ = Po + ^it + ,(t) (39) 
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where 

«(t) - i.i.d. N(0, oi), 

then Var[ll(t)] - Var[e(t)] = , But it is the variance of Y(t) that 

needs to be identified. Solving for Y(t), 

Y(t) > g[U(t)] = —(40) 

Taking the first derivative, 

Let U(. a E{g[U(t)]} = L/{l+exp[-U(t) ]}, then the variance of Y(t) 

becomes, by equation (37), 

Var[Y(t)] = o2{g'[U(t)]}' 

[1 + 
at g[U(t)]=Ut 

a2u»2(L - U»)2 
L: (42) 

Let c = (variance) 0 • 5/a, then equation (42) can be specified as. 

c = Uf - p Uj 2, and 

(43) 
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When the equation (43) is set equal to zero, u^ = L/2, which indicates 

that the maximum of variance function occurs at inflection point, 

because. 

= - { < ° (44) 

This implies that the variance of the Y(t) is not a constant function 

and has the greatest variability at the inflection point of the growth 

curve. 

Gompertz growth curve 

If the original form of the Gompertz growth curve is specified as, 

-G.e'kt 
Y(t) = L'e * ̂ + e(t) (45) 

where 

c(t) ~ i.i.d. M(0, 02), 

then E[Y(t)] = L*exp[-G*exp(-kt)] and Var[Y(t)] = Var[e(t)] = . This 

result indicates that the variance of the observed Y(t) is constant 

over time. 

Linearized Gompertz growth curve 

The linear version of the Gompertz growth curve can be analyzed in 

the same manner as the linearized Fisher-Pry model. If the model is 

specified as, 

V(t) 9 -ln[-ln(~^)] = 00 + Pit + e(t) (46) 
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where 

«(t) - i.i.d. N(0, a'), 

then the model can be rewritten as, 

_.-V(t) 
Y(t) • g[V(t)] = L-e ® (47) 

Taking the first derivative, 

g'CV(t)] = L«exp{-[V(t) + exp(-V(t))]} (48) 

Let Vj • E{g[V(t)]} = L«exp{7exp[-V(t)]}, then the variance of Y(t) 

becomes, 

Var[Y(t)] = o2{g'[v(t)]}' 

= o:L |exp{-2[V(t)+exp(-V(t))]}I 
at g[v(t)]=Vt 

= aîVjî [In-^]' (49) 

Let c = (variance)0 • s/o, then equation (49) can be specified as, 

c = Vf In L - Vf In v*, and 

= In L - In Vf - 1 (50) 

When the equation (50) is set equal to zero, v^ - L/e, which indicates 

that the maximum of variance function occurs at the inflection point. 
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This implies that the variance of the Y(t) is not a constant function 

and has the greatest variability at the inflection point. 

Weibull growth curve 

The Weibull growth curve can be analyzed in the same manner as the 

Gompertz growth curve! If the original form of the Weibull growth 

curve is specified as, 

Y(t) = L - L'e + «(t) • (51) 

where 

e(t) ~ i.i.d. N(0, ffî), 

then, Var[Y(t)] = Var[e(t)] = . Again, the variance of the observed 

Y(t) is constant over time. 

Linearized Weibull growth curve 

For the linear version of the Weibull growth curve, the variance 

of Y(t) is no longer a constant function. Utilizing the Taylor series 

expansion, the variance can be specified in the following fashion. If 

the model is specified as, 

W(t) a ln[-ln(L = gg + />\t + «(t) (52) 

where 

e(t) ~ i.i.d. N(0, *2), 

then the model can be rewritten as. 
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Y(t) • g[W(t)] = L - L«e"® 
W(t) 

(53) 

Taking the first derivative, 

g'[W(t)] = L'exp{-[exp(W(t))-W(t)]} (54) 

Let Wt 9 E{g[W(t)]} = L - L•exp{-exp[W(t)]}, then the variance of Y(t) 

For the Pearl growth curve, the Gompertz growth curve, and the 

Welbull growth curve, the errors have zero mean and a constant variance 

over time. However, transformed models like the linearized Fisher-Pry 

model, the linearized Gompertz growth curve, and the linearized Welbull 

growth curve have increasing variance from time zero to that point at 

which inflection occurs. It can be assumed that if the variance of 

error over time is increasing, then a transformation of observed data 

is appropriate. 

becomes, 

Var[Y(t)] a a3{g'[W(t)]}' 

= |exp{-2[exp(W(t))-W(t)]}I 
at g[W(t)]=Wt 

= ozfL-Wg) (55) 
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Test for Assumptions of Error Structure 

In order to select the appropriate growth curve for a set of time 

series data, It Is suggested to test assumptions of error terms. 

Normality of error terms 

Hypothesis 

The error terms of the growth model are 

normally distributed. 

The error terms of the growth model are not 

normally distributed. 

Test If the observed data are less than 51, the Shaplro-Wilk 

test is used to test this hypothesis [70]. This test is the ratio of 

the best estimator of the variance to the usual corrected sum-of-

squares estimator of the variance. This statistic must be greater than 

0 and less than or equal to 1. If the observed data are greater than 

50, the Kolmogorov goodness-of-fit test is used to test this hypothesis 

[71]. This test measures the largest vertical distance between the 

cumulative empirical and cumulative hypothesized distribution function, 

and compares this statistic to calculated table value. This test for 

normality is chosen rather than the chi-square goodness-of-fit test 

because the Kolmogorov test is exact even for small samples, while the 

chi-square test assumes that the number of observations is large enough 

so that the chi-square distribution provides a good approximation of 

the distribution of the test statistic. 
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The procedure for testing the residuals of each model for 

normality is provided by UNIVARIATE NORMAL procedure Included in SAS 

(Statistical Analysis System) package of computer programs. After each 

growth model is determined, the error terms are calculated and added to 

the SAS data set which already contains all the data. The Kolmogorov 

test is performed on these calculated residuals. The procedure shows 

the probability that there would be a smaller value than the test value 

if the residuals followed the hypothesized distribution. 

Decision rule Reject , if the probability of a smaller 

statistic calculated by the UNIVARIATE procedure is less than 0.05. 

Homoscedasticity of error terms 

Hypothesis 

H;: The error terms of the growth model have 

constant variance. 

H;,: The error terms of the growth model do not have 

constant variance. 

Test The Goldfeld-Quandt test is used to test this hypothesis 

[72]. This test divides the observations into two subgroups (of equal 

size if n is even and a difference in size by one if n is odd), 

calculates the sum of squares of residuals in each model, and uses the 

following F-dlstributed test statistic to test the null hypothesis of 

homoscedasticity against a two sided alternative that the variance of 

the distribution term is different for the two subgroups: 
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(56) 

where 

. rxj s number of observations In subgroup 1, 

n, = number of observations In subgroup 2, 

k = number of parameters estimated. 

An F-distributed ratio of two chl-square distributed random 

variables could be used to test if difference between the variance of 

two separate groups of residuals Is significant. Under the usual 

assumptions, the test on the difference between variance uses a 

statistic, 

where s^ % is the unbiased sample estimate of the variance. However, 

this test is not used because the estimates being used are based on the 

sum of squares of subgroups of residuals from the same growth model. 

These are not statistically Independent since residual depends upon the 

estimate b which depends upon all residuals. Thus, this statistic is 

not a ratio of two independent chl-squares distributed variables as 

required for the F-distribution. In performing the Goldfeld-Quandt 

test, each set of observed data is split into two groups; the earlier 

Si' 
F(ni-k, n^-k) = 

S;: 
(57) 
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years in group 1 and the later years in group 2. The ordinary least 

squares method is performed on each group independently. The ratio of 

two mean square error is calculated and compared to a table F-value. 

To detect heteroscedasticity, however, it is useful to plot residuals 

against fitted dependent variable values [61]. 

Decision rule Reject Hj, if the calculated F-statistic is 

greater than the table F-value at the a = 0.05 level of significance. 

Nonautocorrelation of error terms 

Hypothesis 

H3 : The error terms of the growth model are 

independent of one another. 

: The error terms of the growth model are 

correlated with one another. 

Test The Durbin-Watson test statistic (D: is used to test this 

hypothesis [73]. The test statistic is, 

2 " ®t-1 ) 

D = (58) 

Ze/ 
t=l 

Its distribution is tabled for selected values of the number of 

observations (n) and the number of independent variables which excludes 

the intercept. A value of D close to 0 or 4 would indicate positive or 

negative autocorrelation respectively while a value close to 2 would 
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Indicate independence. PROC GLM of SAS programs Includes an option 

which calculates the Ourbin-Watson statistic for linear estimation 

models. PROC MATRIX of SAS programs was used to calculate the Durbin-

Watson statistic for nonlinear estimation models. The list of programs 

is given in Appendix D. 

Decision rule Reject Hj, if D < d^ or if D > 4-dg at level 2a. 

Do not reject H,, if d^ < D < 4-dy at level 2a. Otherwise, the test is 

inconclusive, where d^ and d^ are values in the Durbin-Watson table 

[74, see Appendix B., Table B.9]. 
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CHAPTER VIT. STATISTICAL ANALYSIS AND EMPIRICAL RESULTS 

This chapter represents the results after applying the appropriate 

statistical procedures and tests to the actual data. Six mathematical 

forms of an S shaped growth curves are considered as models for yearly 

percentages of technological attainment. The upper limit is set at 100 

percent attainment. Given that Y(t) is the cumulative percentage of 

technological attainment at time t (i.e., penetration level achieved at 

time t), the three nonlinearized growth models employed are, 

1. Pearl growth curve 

nt) ^•° .at * «(t) (59) 
1 + oe 

2. Gompertz growth curve 

-G*e 
-kt 

Y(t) = e + e(t) (60)  

3. Weibull growth curve 

Y(t) = 1.0 - e + e(t) (61) 

where 

6(t) ~ i.i.d. N(0, j2) 

The three linear version of growth models are 

1. Linearized Fisher-Pry model 

In (]_ - Y(t)) = Po + + f(t) ( 6 2 )  
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2. Linearized Gonpertz growth curve 

-ln{-ln[Y(t)]} = 00 + 0^t + ,(t) 

3. Linearized Weibull growth curve 

ln{-ln[1.0 - Y(t)]} = Po + /Jit + e(t) 

where 

e(t) - i.i.d. N(0, o:). 

Data 

The data used in this study are twenty-two historical growth cases 

from various Industries. The main requisite for inclusion in the set 

was that any case has at least two points before the five percent 

penetration level, an increasing number of points through ten percent, 

twenty-five percent, fifty percent, and several points beyond the 

seventy-five percent penetration level. This was because the analysis 

was designed to check for forecasting ability at each and every one of 

those levels. 

In all cases except two, it was assumed that penetration would go 

to a hundred percent. In the case of "percentage of households in the 

U.S. with a radio receiver" and "percentage of households in the U.S. 

with a television set", the adoption seemed to have leveled off at 

about ninety-nine percent for a radio receiver and ninety-eight percent 

for a television set. Those levels were then assumed to be upper 

(63) 

( 6 4 )  
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limits and the data values were adjusted so that each values was taken 

as a percentage of its respective upper limit. A list of the cases and 

their sources is given in Appendix E. 

Comparison of the Models 

Prediction achievement is the criteria which will be used to 

determine if any particular model was or a group of models were 

dominantly superior to other models as forecasters of technological 

growth at different penetration levels. A measure of mean square error 

(m.s.e.) is used to determine the adequacy of the fit. The smallest 

mean square error may be used as an indication of which model to use. 

Since the fitted data of linearized models must be transformed back 

into Yf. values, the Rz (coefficient of multiple determination) provided 

in the computer fitting process cannot be utilized; for this reason a 

modified mean square error (i.e., mean estimate error) is used to align 

for model comparisons, 

N 
f (Yt - Yt) 

m.e.e. = — «1000 (65) 
N 

where is the actual penetration achieved at time t, y^ is the 

predicted penetration at time t, N is the number of terms in the 

series, and multiplying by lOOO is only to avoid working with very 

small numbers. This procedure is not unique and it has been used by 
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other Investigators such as Nagar [75] and Ellon et al. [76]. A 

forecasting error was defined analogously. For example, using one of 

growth models at the ten percent penetration level to forecast case 22, 

all points for case 22 up to and Including the ten percent point, if it 

was one of the points, would be used at the estimation stage. All 

points beyond the ten percent level would be forecast and the sum of 

the squared forecast error obtained. That sum would then be divided by 

the number of points forecast to obtain the average squared forecast 

error (i.e., mean forecast error). Tables of such errors, on a case by 

case basis, at each level of fitting and forecasting errors are given 

in Appendix F and Appendix G. 

Comparison of the models is accomplished by testing the following 

hypothesis: 

: No significant difference exists among the 

fitting errors of technological growth models 

at each penetration level. 

At least one significant difference exists 

between the fitting errors of technological 

growth models at each penetration level. 

H,: No significant difference exists among the 

forecasting errors of technological growth 

models at each penetration level. 

: At least one significant difference exists 

between the forecasting errors of technological 

growth models at each penetration level. 
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To test these hypotheses and determine if any one growth model 

outperforms any other of the growth models at each penetration level, 

an analysis of variance (ANOVA) is performed. An F-test provides 

evidence that a difference may exist among means (mean estimate error 

or mean forecast error) of several groups. However, if there are k 

different means being compared, there are k(k-l)/2 potential 

differences, and the F-test dose not indicate between which means these 

differences may be. Therefore, a modified Tukey's test [77] is 

performed to test all comparisons among means. The test is made by 

computing a difference, 0, which is significant at the 5% level, when 

comparing it with the k(k-l)/2 sample differences in the experiment. D 

is the product of a square root of sVn and a factor, Q, where s2 is 

the estimate of the variance within the groups, and Q is given in the 

table of "studentized range" [78]. 

If any sample differences exceed the calculated D-value, then a 

significant difference may exist between the means of those two groups 

and may indicate that one growth model may perform significantly 

different from another growth model. 

In order to perform a parametric analysis of variance such as 

Tukey's test, several assumptions about the data are necessary. These 

assumptions include: 

1. Homogeneity of variances between populations, 

2. Normality of error terms, 

3. Additivity, 

4. Independence of error terms. 
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However, if these assumptions are violated by the data, a nonparametric 

analysis of variance would be more appropriate. Therefore, the same 

data are tested using the nonparametric Kruskal-Wallis test [79] 

available in the SAS package of computer programs by NPARIWAY 

procedure. In this test, k random samples are obtained from k possibly 

different populations and the null hypothesis that all of the 

populations are identical is tested against the alternative that some 

of the populations tend to furnish greater observed values than other 

populations. 

The Kruskal-Wallis test is chosen rather them the median test 

since the former uses more information contained in the observations 

than does the latter. The Kruskal-Wallis test statistic is a function 

of the ranks of the observations in the combined sample while the 

median test statistic is dependent only on the knowledge of whether the 

observations were below or above the grand median. For this reason the 

Kruskal-Wallis test is usually more powerful than the median test. All 

statistical significance tests were performed at the 95% confidence 

level. 

Results for Assumptions of Error Structure 

Normality of error terms 

Table 2 contains the summarized results of tests for normality of 

error terms using the six growth models calculated from the historical 

growth cases. 
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TABLE 2. Summary of tests for normality of error terms 

LFP LGZ LWB PL GZ WB Total 

Not rejected 12 15 7 11 14 15 74 
Rejected 10 7 15 11 8 7 58 

Not rejected indicates that there is not sufficient evidence to show 
that the error terms are not normally distributed. 
Rejected indicates that there is sufficient evidence to show that 
the error terms are not normally distributed. 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
MB = Weibull growth curve 

This table is derived from the individual case results contained 

in Appendix H, which includes the a-values (level of significance) for 

normality test. As shown in Table 2, nonnormality of the distribution 

of error terms exists in many of the growth models which are used for 

predictive purposes. This result illustrates that the applied 

transformations (i.e., linearized models) did not remove the 

nonnormality of error terms in many cases. 

The violation of the assumption of error terra normality will 

affect confidence intervals established for predictions from the final 

model. Nonnormality of error terms will cause intervals of given 

confidence levels to be calculated as smaller than they would have been 

if the true distribution were used in the determination of the 

interval. 
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Homoscedasticlty of error terms 

Table 3 contains the summarized results of the tests for constant 

variance of the error terms using the various growth models calculated 

from the historical growth cases. 

TABLE 3. Summary of tests for homoscedasticlty 

LFP LGZ LWB PL GZ WB Total 

Not rejected 11 7 2 9 9 7 45 
Rejected 11 15 20 13 13 15 87 

Not rejected Indicates that there Is not sufficient evidence to show 
that the error terms do not have constant variance. 
Rejected Indicates that there Is sufficient evidence to show that 
the error terms do not have constant variance. 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 

This table is derived from the individual case results contained 

in Appendix I, which includes the F-values for homoscedasticlty test. 

The results from Table 3 suggest that the applied linearized models did 

not remove the violation of heteroscedasticity. The presence of 

heteroscedasticity causes the variance of the estimates to be biased 

upward. At a given level of reliability, this may cause a wider 
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confidence Interval to be constructed than would have been constructed 

had there been no bias. 

Autocorrelation of error terms 

Table 4 contains the summarized results of the tests for the 

independence of the error terms using the various growth models 

calculated from the historical growth cases. 

TABLE 4. Summary of tests for autocorrelation 

LFP LGZ LWB PL GZ WB Total 

Not rejected 0 1 1 1 3 2 8 
Rejected 22 21 21 21 19 20 124 

Not rejected indicates that there is not sufficient evidence to show 
that the error terms are not independent. 
Rejected indicates that there is sufficient evidence to show that 
the error terms are not independent. 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB - Weibull growth curve 

This table is derived from the individual case results contained 

in Appendix J, which includes the Durbin-Watson test statistic values. 

Since time series data are being used, a priori autocorrelation is 

suspected to be a problem. Table 4 indicates that growth models 

experience a significant degree of autocorrelation. 
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As shown in tables, the violation of the assumption of no 

autocorrelation appeared to have the most serious consequences, 

followed by heteroscedasticlty, and then nonnormallty. 

Interrelationships may exist among assumption violations of error 

terms. For example, the test for homôscedasticity of error terms is 

very sensitive to nonnormallty. Sometimes the removal of one violation 

may be accomplished only at the expense of creating another violation. 

Therefore, a transformation is not performed on a model when the result 

is to reduce the effect of one violation and increase the effect of a 

more serious violation. 

Results for Comparison of the Fitting Ability 

Results of Tukey test 

The comparison is performed using Tukey's test which is an 

analysis of variance among the fitting errors of growth models. Table 

5 contains the analysis of variance results when Tukey's test was 

applied to the relative fitting errors of growth models for twenty-two 

cases at 5% penetration level. The factor Q is obtained from the 

"studentlzed range" table from Blometrlka [78] for six treatments and 

126 degree of freedom. D represents the largest difference between the 

means of any two treatments that may exist and still be considered 

sampling error rather than a difference between treatment means. 

Table 6 contains the difference between sample means of the six 

growth models performed at 5% penetration level. 
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TABLE 5. ANOVA Of fitting error at 5% level 

source of variation d.f. sum of squares mean square 

model 5 0.00141801 
error 126 0.01615207 0.00012819 
total 131 0.01757008 

Q = 4.093 
s = (0.00012819/22) 1 / :  = 0.002414 
D = Q'S = 0.00988 

TABLE 6. Fitting differences between models at 5% level 

LFP LGZ LWB PL GZ WB 

LFP(0.015) 
LGZ(0.009) 
LWB(0.007) 
PL(0.006) 
GZ(0.006) 
WB(0.005) 

0.006249 0.007630 0.008797 0.008964 0.009734 
0.001381 0.002548 0.002715 0.003485 

0.001167 0.001333 0.002103 
0.000166 0.000936 

0.000770 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 

The bracketed number after the name of model is the mean for the 

twenty-two cases of the mean estimate error using each growth model as 

described in equation (65). As can be seen from Table 6, none of the 

difference exceeds the calculated Tukey's D of 0.00988; therefore, 
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(there exists no significant difference among the fitting errors of 

growth models) hypothesis cannot be rejected for the 5% penetration 

level at the 5% significance level. There is not sufficient evidence 

to show that a true difference exists between any of the growth models 

at 5% penetration level, and those differences that are shown in Table 

6 are probably due to the sampling error. 

Table 7 contains the analysis of variance results when Tukey's 

test was applied to the relative fitting errors of growth models at 10% 

penetration level. Six treatments and 126 degrees of freedom are used 

to determine Q. 

TABLE 7. ANOVA of fitting error at 10% level 

source of variation d.f. sum of squares mean square 

model 5 0.03888254 
error 126 0.39649599 0.00314679 
total 131 0.43537853 

Q = 4.093 
s = (0.00314679/22)1/2 = 0.011960 
D = Q'S = 0.04895 

Table 8 contains the difference between sample means of the six 

growth models which are compared to Tukey's D of 0.04895. 

The H4 hypothesis is rejected at the 5% of significance, 

indicating that a statistical difference exists between the linearized 

Fisher-Pry model and the Weibull growth curve. Since this difference 
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TABLE 8. Fitting differences between models at 10% level 

LFP LGZ LWB PL GZ WB 

LFP(0.076) — 0.03209 0.03359 0.04537 0.04764 0.05127" 
LGZ(0.044) - 0.00150 0.01328 0.01555 0.01918 
LWB(0.042) - 0.01178 0.01405 0.01768 
PL(0.030) - 0.00227 0.00590 
GZ(0.028) - 0.00362 
WB(0.025) — 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
* = indicates significant difference exists between models 

is too large to be due to sampling error alone, the linearized Fisher-

Pry model appears to have a larger fitting error than the Weibull 

growth curve at 10% penetration level. 

Table 9  contains the analysis of variance results when Tukey's 

test was applied to the relative fitting errors of growth models at 25% 

penetration level. Six treatments and 126 degrees of freedom are used 

to determine Q. 

Table 10 contains the difference between sample meams which are 

compared to Tukey's D of 0.34389. 

The hypothesis is rejected at the 5% of significance, 

indicating that a statistical difference exists between the linearized 

Fisher-Pry model and the other growth models. This result indicates 
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TABLE 9. ANOVA of fitting error at 25% level 

source of variation d.f. sum of squares mean square 

model 5 3.43363439 
error 126 19.56926028 0.15531159 
total 131 23.00289467 

Q = 4.093 
S = (0.15531159/22)1/2 = 0.084019 
D = Q'S = 0.34389 

TABLE 10. Fitting differences between models at 25% level 

LFP LGZ LWB PL GZ WB 

LFP(0.62) - 0.3640* 0.3746* 0.4317* 0.4612* 0.4672* 
LGZ(0.26) 0.0106 0.0677 0.0972 0.1032 
LWB(0.24) - 0.0571 0.0866 0.0926 
PL(0.19) - 0.0295 0.0355 
GZ(0.16) - 0.0060 
WB(0.15) — 

Key; LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
MB = Weibull growth curve 
* - indicates significant difference exists between models 

that the linearized Fisher-Pry model appears to have a larger fitting 

error than the other growth models at 25% penetration level. 

Therefore, considering only the factor of fitting ability, the 

linearized Fisher-Pry model would probably provide the analyst with the 

worst results at 25% penetration level. 
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Table 11 contains the analysis of variance results when Tukey's 

test was applied to the relative fitting errors of growth models at 50% 

penetration level. Six treatments and 126 degrees of freedom are used 

to determine Q. 

TABLE 11. ANOVA Of fitting error at 50% level 

source of variation d.f. sum of squares mean square 

model 5 45.65470536 
error 126 122.68513946 0.97369158 
total 131 168.33984482 

Q = 4.093 
s = (0.97369158/22)1/2 = 0.210369 
D = Q>s = 0.86104 

Table 12 contains the differences between sample means of the six 

growth models which are compared to Tukey's D of 0.86104. 

The hypothesis is rejected at the 5% of significance, 

indicating that a statistical difference exists between the linearized 

Fisher-Pry model and the other growth models. This result indicates 

that the linearized Fisher-Pry model appears to have a larger fitting 

error than the other growth models at 50% penetration level. 

Therefore, considering only the factor of fitting ability, the 

linearized Fisher-Pry model would probably provide the analyst with the 

worst results at 50% penetration level. 
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TABLE 12. Fitting differences between models at 50% level 

LFP LGZ LWB PL GZ WB 

LFP(2.17) - 1.3461* 1.1311* 1.5496* 1.6743* 1.7196* 
LGZ(0.82) 0.2150 0.2035 0.3282 0.3736 
LWB(1.04) - 0.4186 0.5432 0.5886 
PL(0.62) - 0.1247 0.1700 
GZ(0.49) - 0.0453 
WB(0.45) — 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
* = indicates significant difference exists between models 

Table 13 contains the analysis of variance results when Tukey's 

test was applied to the relative fitting errors of growth models at 75% 

penetration level. Six treatments and 126 degrees of freedom are used 

to determine Q. 

TABLE 13. ANOVA of fitting error at 75% level 

source of variation d.f. sum of squares mean square 

model 5 117.12870580 
error 126 296.94189558 2.35668171 
total 131 414.07060138 

Q = 4.093 
S = (2.35668171/22)1/2 = 0.327295 
D = Q'S = 1.3396 
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Table 14 contains the differences between sample means of the six 

growth models which are compared to Tukey's D of 1.3396. 

TABLE 14. Fitting differences between models at 75% level 

LFP LGZ LWB PL GZ WB 

LFP(3.75) - 2.2487* 1.7194* 2.2822* 2.7970* 2.6927* 
LGZ(1.50) 0.5293 0.0335 0.5483 0.4440 
LWB(2.03) - 0.5629 1.0776 0.9733 
PL(1.47) - 0.5148 0.4104 
GZ(0.95) - 0.1043 
WB(1.05) — 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
* - indicates significant difference exists between models 

The hypothesis is rejected at the 5% of significance, 

indicating that a statistical difference exists between the linearized 

Fisher-Pry model and the other growth models. This result indicates 

that the linearized Fisher-Pry model appears to have a larger fitting 

error than the other growth models at 75% penetration level. 

Therefore, considering only the factor of fitting ability, the 

linearized Fisher-Pry model would probably provide the analyst with the 

worst results at 75% penetration level. 
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Table 15 contains the analysis of variance results when Tukey's 

test was applied to the relative fitting errors of growth models at 

100% penetration level. Six treatments and 126 degrees of freedom are 

used to determine Q. 

TABLE 15. ANOVA Of fitting error at 100% level 

source of variation d.f. sum of squares mean square 

model 5 516.62353322 
error 126 1219.77233965 9.68073285 
total 131 1736.39587287 

Q = 4.093 
s = (9.68073285/22)1/2 = 0.663350 
D = Q'S = 2.715 

Table 16 contains the difference between sample means of the six 

growth models which are compared to Tukey's D of 2.715. 

The hypothesis is rejected at the 5% of significance, 

indicating that a statistical difference exists between the linearized 

Fisher-Pry model and the other nonlinearized growth models and between 

the linearized Weibull growth curve and the other nonlinearized growth 

models. This result indicates that the linearized Fisher-Pry model and 

the linearized Weibull curve appear to have a larger fitting error than 

the other nonlinearized growth models at 100% penetration level. 

Therefore, considering only the factor of fitting ability, the 

linearized Fisher-Pry and the linearized Weibull curve would probably 

provide the analyst with worse results at 100% penetration levels. 
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TABLE 16. Fitting differences between models at 100% level 

LFP LGZ LWB PL GZ WB 

LFP(6.23) 2.0901 0.3769 4.1826* 4.7027* 4.7535* 
LGZ(4.14) 1.7132 2.0925 2.6125 2.6634 
LWB(5.86) - 3.8057* 4.3258* 4.3766* 
PL(2.05) - 0.5200 0.5709 
GZ(1.53) - 0.0508 
WB(1.48) — 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
* = indicates significant difference exists between models 

Table 17 shows that the linearized versus the nonlinearized growth 

models of fitting ability for each model, at each penetration level. 

The bracketed number after the name of model is the mean for the 

twenty-two case of the mean estimate error using each model. 

This result indicates that a difference in the fitting ability of 

the models does exist at the 5% level of significance. Nonlinearized 

growth models appear to provide a significantly lower fitting error 

than do the linear version of growth models. Therefore, if statistical 

fitting is the criterion used to select a forecasting model, 

nonlinearized growth models would probably provide the analyst with 

better results. 
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TABLE 17. Linearized vs. nonlinearized fitting error 

level model 

5% LFP(0.0148) 
PL(0.0060) 
F = 4.83 

P>F = 0.0393* 

LGZ(0.0086) 
GZ(0.0059) 
F = 7.23 

P>F = 0.0137* 

LWB(0.0072) 
WB(0.0051) 
F = 6.14 

P>F = 0.0218* 

10% LFP(0.0758) 
PL(0.0304) 
F = 6.15 

P>F = 0.0217* 

LGZ(0.0437). 
GZ(0.0282) 
F = 8.89 

P>F = 0.0071* 

LWB(0.0422) 
WB(0.0246) 
F = 6.79 

P>F = 0.0165* 

25% LFP(0.6192) 
PL(0.1875) 
F = 9.26 

P>F = 0.0062* 

LGZ(0.2552) 
GZ(0.1580) 
F = 10.35 

P>F = 0.0041* 

LWB(0.2446) 
WB(0.1520) 
F = 12.86 

P>F = 0.0017* 

50% LFP(2.1681) 
PL(0.6185) 
F - 18.49 

P>F = 0.0003* 

LGZ(0.8220) 
GZ(0.4938) 
F = 12.80 

P>F = 0.0018* 

LWB(1.0370) 
WB(0.4484) 
F = 17.28 

P>F = 0.0004* 

75% LFP(3.7475) 
PL(1.4652) 
F = 20.63 

P>F = 0.0002* 

LGZ(1.4988) 
GZ(0.9505) 
F = 14.53 

P>F = 0.0010* 

LWB(2.0280) 
WB(1.0548) 
F = 17.77 

P>F = 0.0004* 

100% LFP(6.2320) 
PL(2.0494) 
F = 24.42 

P>F = 0.0001* 

LGZ(4.1419) 
GZ(1.5294) 
F = 9.63 

P>F = 0.0054* 

LWB(5.8552) 
WB(1.4785) 
F = 29.00 

P>F = 0.0001* 

Key: P>F = probability of a higher value of F-value 
* = indicates significantly different with 5% confidence 

Results of Kruskal-Wallis test 

A nonparametric approach is applied to the same data in order to 

see if results would change with the relaxing of the analysis of 
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variance assumptions that observations are selected from a normally 

distributed population. Nonparametric tests are distribution-free 

tests and do not rely on the assumption of normality. Since the sample 

size for all six groups of growth models exceeds five, the chi-square 

approximation is used for the Kruskal-Wallls test. The approximation 

appears to be fairly good when sample sizes exceed five [79]. Table 18 

contains the results of the Kruskal-Wallis test for the growth models 

at different penetration levels. 

TABLE 18. Results of Kruskal-Wallis test (fitting ability) 

penetration level test value probability 

5% 8.55 0.1282 
10% 11.83 0.0373* 
25% 15.84 0.0073* 
50% 22.57 0.0004* 
75% 22.13 0.0005* 
100% 44.87 0.0001* 

Key: * - indicates significantly different with 5% confidence 

The results of Table 18 suggest that no significant difference is 

detected among the fitting errors of the six growth models at 5% 

penetration level; however, a significant difference seems to exist 

among the fitting errors of the six growth models at 10%, 25%, 50%, 

75%, and 100% penetration level. These results are consistent with 

those produced by performing Tukey's test on the data. 
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Results for Comparison of the Forecasting Ability 

Results of Tukey test 

The comparison among the forecasting errors of growth models is 

performed using Tukey's test. Table 19 contains the differences 

between forecast errors at 5% penetration level which are compared to 

Tukey's 0 of 88.714. The bracketed number after the name of model is 

the mean for the twenty-two cases of the average squared forecast error 

using each growth model as defined in equation <65). 

TABLE 19. Forecast differences between models at 5% level 

LFP LGZ LWB PL GZ WB 

LFP(54.26) — 5.78 83.91 20.85 2.51 81.71 
LGZ(48.47) - 89.70* 26.63 3.27 87.49 
LWB(138.2) - 63.07 86.42 2.20 
PL(75.10) - 23.36 60.80 
GZ(51.74) - 84.22 
WB(136.0) 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB - Weibull growth curve 
* = indicates significant difference exists between models 

The H, (there exists no significant difference among the the 

forecasting errors of growth models) hypothesis is rejected at the 5% 
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level of significance, indicating that the linearized Weibull growth 

curve appears to have a larger forecasting error than the linearized 

Gompertz growth curve at 5% penetration level. 

Table 20 contains the differences between forecast errors of the 

six growth models performed at 10% penetration level. 

TABLE 20. Forecast differences between models at 10% level 

LFP LGZ LWB PL GZ WB 

LFP(56.67) 20.21 22.90 23.76 23.70 27.73 
LGZ(36.47) - 43.10 43.97 3.49 47.94 
LWB(79.57) - 0.86 46.59 4.84 
PL(80.43) - 47.46 3.97 
GZ(32.97) - 51.43 
WB(84.41) 

Key; LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 

As can be seen from Table 20, none of the difference exceeds the 

calculated Tukey's D of 75.31; therefore, H, hypothesis cannot be 

rejected at the 5% significance level. There is not sufficient 

evidence to show that a true difference exists between any of the 

growth models at 10% penetration level. 

Table 21 contains the differences between forecast errors at 25% 

penetration level which are compared compared to Tukey's D of 31.265. 
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TABLE 21. Forecast differences between models at 25% level 

LFP LGZ LWB PL GZ HB 

LFP(33.37) 3.42 21.60 10, .93 5 .63 16 .16 
LGZ(29.95) - 25.02 7. .51 2 .21 19. .58 
LWB(54.96) - 32. ,52* 27 .23 5, .44 
PL(22.44) 5, .30 27, .08 
GZ(27.74) 21. .79 
WB(49.52) ' 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Welbull growth curve 
PL = Pearl growth curve 
GZ a Gompertz growth curve 
WB = Welbull growth curve 
* = Indicates significant difference exists between models 

The H, hypothesis is rejected at the 5% of significance, 

indicating that the linearized Welbull growth curve appears to have a 

larger forecasting error than the Pearl growth curve at 25% penetration 

level. 

Table 22 contains the difference between forecast errors of the 

six growth models performed at 50% penetration level. 

As can be seen from Table 22, none of the difference exceeds the 

calculated Tukey's 0 of 13.253; therefore, H, hypothesis cannot be 

rejected at the 5% significance level. There is not sufficient 

evidence to show that a true difference exists between any of the 

growth models at 50% penetration level. 
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TABLE 22. Forecast differences between models at 50% level 

LFP LGZ LWB PL GZ WB 

LFP(18.79) - 2.821 0.772 8.643 8.548 3.391 
LGZ(15.97) - 3.592 5.823 5.727 0.570 
LWB(19.56) . - 9.415 9.320 4.163 
PL(10.15) - 0.095 5.252 
GZ{10.24) - 5.157 
WB(15.40) • — 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 

Table 23 contains the difference between forecast errors of the 

six growth models performed at 75% penetration level. 

As can be seen from Table 23, none of the difference exceeds the 

calculated Tukey's D of 7.0837; therefore, H, hypothesis cannot be 

rejected at the 5% significance level. There is not sufficient 

evidence to show that a true difference exists between any of the 

growth models at 75% penetration level. 

Table 24 shows that the linearized versus the nonlinearized growth 

models of forecasting ability for each model, at each penetration 

level. The bracketed number after the name of model is the mean for 

the twenty-two case of the average squared forecast error using each 

model. 
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TABLE 23. Forecast differences between models at 75% level 

LFP LGZ LWB PL GZ WB 

LFP(8.30) 0.716 1.481 3.550 2.565 3.150 
LGZ(9.02) • - 0.765 4.266 3.280 3.865 
LWB(9.78) - 5.031 4.046 4.631 
PL(4.75) - 0.985 0.400 
GZ(5.74) - 0.585 
WB(5.15) — 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 

The results of Table 24 suggest that no significant difference 

appears to be detected among the forecasting errors of the growth model 

at lower penetration levels; however, nonlinearized growth models 

improve the forecasting ability of most of models especially at higher 

penetration levels. 

Results of Kruskal-Wallis test 

A nonparametric approach is applied to the same data in order to 

see if results would change with the relaxing of the analysis of 

variance assumptions. Table 25 contains the results of the Kruskal-

Wallis test for the growth models at different penetration levels. 

The results of Table 25 suggest that no significant different 

appears to be detected among the forecasting errors of the six growth 
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TABLE 24. Linearized vs. nonlinearized forecasting error 

level model 

5% LFP(54.26) 
PL(75.10) 
P = 0.87 

P>F = 0.3624 

LGZ(48.47) 
GZ(51.74) 
F = 0.15 

P>F = 0.7069 

LWB(138.17) 
WB(135.96) 
F = 0.08 

P>F = 0.7834 

10% LFP(56.67) 
PL(80.43) 
F = 0.62 

P>F = 0.4391 

LGZ(36.47) 
GZ(32.97) 
F = 0.21 

P>F = 0.6551 

LWB(79.57) 
WB(84.41) 
F = 0.26 

P>F = 0.6124 

25% LFP(33.37) 
PL(22.44) 
F = 7.29 

P>F = 0.0134* 

LGZ(29.95> 
GZ{27.74> 
F = 0.20 

P>F = 0.6564 

LWB(54.96) 
WB(49.52) 
F = 0.39 

P>F = 0.5407 

50% LFP(18.79) 
PLdO.lS) 
F = 12.11 

P>F = 0.0022* 

LGZ(15.97) 
GZ(10.24) 
F = 3.48 

P>F = 0.0762 

LWB(19.56} 
WB(15.40).-
F = 3.31 

P>F = 0.0830 

75% LFP(8.300) 
PL(4.750) 
F = 9.85 

P>F = 0.0050* 

LGZ(9.020) 
GZ(5.740) 
F = 4.69 

P>F = 0.0420* 

LWB(9.780) 
WB(5.150) 
F = 11.51 

P>F = 0.0027* 

Key; P>F = probability of a higher value of F-value 
* = indicates significantly different with 5% confidence 

models at 50% and 75% penetration level; however, a significant 

difference seems to exist among the forecasting errors of the six 

growth models at 5%, 10%, and 25% penetration level. These results are 

consistent with those produced by performing Tukey's test on the data, 

except at 10% penetration level. 
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TABLE 25. Results of Kruskal-Wallls test (forecasting ability) 

penetration level test value probability 

5% 12.22 0.0318* 
10% 13.08 0.0226* 
25% 14.71 0.0117* 
50% 8.97 0.1102 
75% 5.36 0.3731 

Key: * = indicates significantly different with 5% confidence 

The general result that must be noted is the performance of the 

version of Weibull curves. For fitting ability, the version of Weibull 

curves and Gompertz curves are statistically better than the logistic 

curves; however, the Weibull curves are statistically the worst in 

forecasting ability. For this reason, only the statistically better 

models were used, namely the logistic curves and the Gompertz curves, 

for forecasting. 
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CHAPTER VIII. SIMULATED GROWTH CURVES 

The empirical results of using six technological growth models and 

the poor performance of the Weibull curves for forecasting ability have 

been tested in Chapter VII. The dilemma lies in choosing an 

appropriate model. Some analysts favor the use of a common form of the 

nonlinearized models, such as the Pearl growth curve or the Gompertz 

curve; still others prefer to employ transformations of the models, 

such as the linearized Fisher-Pry model or the linearized Gompertz 

growth curve. 

Rather than consistently utilizing one version of a growth model 

for all technological phenomena, an approach is suggested to develop 

diagnostics which distinguish between the logistic growth curves and 

the version of Gompertz curves as the general form of a growth curve, 

and then to develop further criteria which will determine the preferred 

transformation of growth curve in each version. 

Simulation of Growth Models 

Once the models have been specified as done in Chapter VII, 

simulations are run to create several data series with known population 

growth models. Simulations were developed in SAS using its random 

number generator to create the stochastic element at each model. 

Table 26 contains the summarized results of the factor levels for 

the standard errors of error terms, the parameter terms, and the length 

of simulated data using the four growth models, calculated from the 
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twenty-two historical growth cases. This table Is derived from the 

Individual case results contained In Appendix K, Appendix L, and 

Appendix M. 

TABLE 26. Factor levels for simulated models 

model standard error scale parameter shape parameter length 

PL 0.04184 40.774 0.1811 40 
GZ 0.03612 7.532 0.1254 40 
LFP 0.6326 -3.848 0.1924 40 
LGZ 0.3358 -1.782 0.1209 40 

Key: LFP = linearized Fisher-Pry model 
LGZ - linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 

All four models are used to the simulated data for fitting and 

forecasting, utilizing the Marquardt nonlinear algorithm provided in 

SAS programs for the Pearl curve and the Gompertz curve; the ordinary 

least squares method is used for the linearized Fisher-Pry model and 

the linearized Gompertz curve. Ten replicates were run for each 

penetration level. This results in nine hundred and sixty runs for 

test of fitting ability and eight hundred runs for test of forecasting 

ability. 
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Diagnostics of Growth Models 

With knowledge of the underlying population model, the techniques 

for model selection could be created and then tested for accuracy. Two 

key aspects need to be studied to determine the appropriate model: the 

general form of the trend (degree of skew) and the underlying error 

structure (shape of variance function over time), in order to specify 

the appropriate choice of both characteristics, diagnostics are 

employed to aid in choosing the appropriate model. 

Skew of models 

Two diagnostic procedures are proposed to determine whether data 

conform better to the logistic versions or the Gompertz versions. The 

first is a graphical procedure which examines plots of the data and the 

second is a post-fitting diagnostic. 

Graphical procedure For the graphical procedure, suitable 

transformations are needed which will produce straight line plots of 

the data when the underlying model is correct. The appropriate 

transformation for the logistic versions is 

L(t) 3 In (37—7^) (66) 

whereas for the Gompertz versions, 

G(t) a -ln{-ln[Y(t)]} (67) 
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These transformations are applied to each set of simulated data. 

If the data are the logistic versions in nature, equation (66) results 

in a linear plot of L(t) against time t, whereas equation (67) produces 

a slightly curved plot which is convex to the origin (the plot becomes 

steeper as t increase). Figure 5 and Figure 6 illustrate these 

phenomena. 
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FIGURE 5. Linear logistic plot of logistic simulation 

If the data are based on the Gompertz models, equation (66) 

produces a slightly curved plot which is concave to the origin (i.e., 
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FIGURE 6. Linear Gompertz plot of logistic simulation 

the plot flattens out as t Increases), whereas equation (67) provides a 

linear plot. Figure 7 and Figure 8 demonstrate these phenomena. 

Post-fitting diagnostic A modified mean square error (i.e., 

mean estimate error) is used as a post-fitting diagnostic for model 

selections. If the smallest mean estimate error is for the Pearl or 

the linearized Fisher-Pry model, the logistic version is chosen. If 

the Gompertz or the linearized Gompertz curve yields the smallest mean 

estimate error, then the Gompertz version is chosen. 
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FIGURE 7. Linear logistic plot of Gompertz simulation 

Error structures of models 

In order to determine the appropriate form of the error structure, 

the mean estimate error was supposed to select the best form of the 

error structure. The smallest mean estimate error for the four fitted 

models may be determine both the best model and the best 

transformation. But the mean estimate error proved to be inadequate, 

as will be shown in the next section. To compensate, another pre-

fitting diagnostic was devised to permit the analyst to choose the 
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FIGURE 8. Linear Gompertz plot of Gompertz simulation 

appropriate transformation of a growth curve. As shown, in Chapter VI, 

for the Pearl curve or the Gompertz curve, the errors have zero mean 

and a constant variance over time. Transformed models, however, like 

the linearized Fisher-Pry model or the linearized Gompertz curve has 

increasing variance from t - 0 to the inflection point. 

A pre-fitting diagnostic is devised to determine whether the 

variance of error terms is constant or increasing in structure. A time 

series of pseudo-residuals is used by subtracting the three point 

moving average from each Y(t), 
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R(t) = Y(t) - g [Y(t-l) + Y(t) + Y(t+1)] (68) 

These pseudo-residuals are then plotted against time to ascertain 

whether the variation of the data points is constant or Increasing over 

time. Such a plot could allow for the visual determination of constant 

versus increasing variance over time. 

An example of such a residual plot of the Pearl growth curve has 

been provided in Figure 9 and the linearized Fisher-Pry model Is 

plotted in Figure 10. 
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FIGURE 9. Residuals plot of Pearl simulation 
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FIGURE 10. Residuals plot of linearized Fisher-Pry simulation 

Figure 11 and Figure 12 demonstrate a typical residual plot for 

the Gompertz and the linearized Gompertz growth curve respectively. 

Results of Diagnostic Tests 

The diagnostic tests to determine the skew and the error structure 

appropriate for a given set of simulated data was performed and tested 

the effectiveness of these criteria. 

Results of skew diagnostic 

As described previously, two techniques were employed to determine 

the general form of the growth curve. 
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FIGURE 11. Residuals plot of Gompertz simulation 

Results of graphical procedure The graphical procedure is 

performed as to which transformed data plot yields the straighter line. 

Two hundred forty different pairs of graphs (four models with six 

different penetration levels, repeated ten times) were judged 

independently by two experts. Their results, broken down in the number 

of correct decisions of the logistic versions or the Gompertz versions, 

are summarized in Table 27. 

Even though the experts used a graphical plot, as shown in Table 

27, it appears that this pre-fit diagnostic would be appropriate. 
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FIGURE 12. Residuals plot of linearized Gompertz simulation 

Results of post-fitting diagnostic The results of the post-

fitting diagnostic of choosing the model with the smallest mean 

estimate error are included in Table 28. 

In the general model determination phase, it appears that either 

the graphical diagnostic (i.e., choosing the straighter of the two 

lines) or the post-fitting diagnostic (i.e., choosing logistic or 

Gompertz according to the smaller mean estimate error) would be 

appropriate. 
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TABLE 27. Decisions of general form by experts 

penetration level 5% 10% 25% 50% 75% 100% 

simulated expert 
model decision 1 2 1 2 1 2 1 2 1 2 1 2 

PL Logistic 6 7 8 7 9 9 9 9 9 9 10 10 
Gompertz 4 3 2 3 1 1 1 1 1 1 0 0 

LFP Logistic 6 7 9 8 9 10 . 10 10 10 10 10 10 
Gompertz 4 3 1 2 1 0 0 0 0 0 0 0 

GZ Logistic 1 2 1 1 1 1 0 0 0 0 0 0 
Gompertz 9 8 9 9 9 9 10 10 9 9 10 10 

LGZ Logistic 1 1 0 0 1 0 0 0 1 1 0 0 
Gompertz 9 9 10 10 9 10 10 10 9 9 10 10 

total number missed 10 9 4 6 4 2 1 1 2 2 0 0 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 

correct decisions/total: expert 1: 219/240 = 0.913 
expert 2: 220/240 = 0.916 

TABLE 28. Determination of general form by mean estimate error 

simulated models 
PL LFP GZ LGZ 

correct 57 57 60 60 
incorrect 3 3 0 0 

total 60 60 60 60 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
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Results of error structure diagnostic 

It was originally thought that the smallest mean estimate error 

would provide the means for determining the underlying error structure 

of the model. However, as shown in Table 29, the mean estimate error 

of the Pearl growth curve was smaller than the linearized Fish-Pry 

models, and the mean estimate error of the Gompertz curve was smaller 

than the linearized Gompertz curve 

TABLE 29. Error structure chosen by mean estimate error 

smallest mean 
estimate error PL 

simulated 
LFP 

models 
GZ LGZ 

PL 56 51 0 0 
LFP 1 6 0 0 
GZ 2 2 60 58 
LGZ 1 1 0 2 

total missed 4 54 0 58 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 

Note that, when fitting the linearized Fisher-Pry model or the 

linearized Gompertz curve on their own simulations, the mean estimate 

error criterion could not select the correct model. Since the mean 

estimate error criterion tends to incorrectly identify the transformed 

models, a pseudo-residuals plot is provided for determining the 

underlying error structure of the model. 



www.manaraa.com

110 

To test the diagnostic of the pseudo-residuals, another expert was 

chosen to separate eighty plots of the simulated data (four models with 

two different penetration levels, repeated ten times each) into two 

groups: constant variance or Increasing variance. Table 30 provides 

the results of test. 

TABLE 30. Error structure chosen by residuals plot 

simulated models 
PL LFP GZ LGZ 

constant variance 19 2 18 1 
increasing variance 1 18 2 19 

total missed 1 2 2 1 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 

Note that only six plots were classified incorrectly. Considering 

the high degree of inaccuracy for choosing the appropriate error 

structure when using the mean estimate error criterion, the diagnostic 

of pseudo-residuals plot is more appropriate for specifying the 

underlying error structure. 
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Selection Procedure for Growth Models 

For choosing the general form of growth models, both the graphical 

diagnostic and the mean estimate error criterion work equally well in 

selection. For error structure, the diagnostic of pseudo-residuals 

plot is more accurate means of selection growth model than the mean 

estimate error criterion. 

However, before the final procedure is developed to select the 

appropriate growth model, the forecasting ability was compared. Table 

31 provides the summarized decision of the smallest mean forecast error 

for all two hundred simulated data (four models with five different 

penetration levels, repeated ten times each). 

TABLE 31. Smallest mean forecast error for simulated data 

smallest mean simulated models 
forecast error PL LFP GZ LGZ 

PL 34 25 0 0 
LFP 16 25 0 0 
GZ 0 0 40 26 
LGZ 0 0 10 24 

total 50 50 50 50 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
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This table illustrates that knowledge of the general form of the 

model does improve the accuracy of forecasting, but knowledge of the 

error structure does not prove to be as helpful. As shown in Table 31, 

for the linearized Fisher-Pry model, the Pearl growth model performs 

better twenty-five out of fifty times; whereas, for the linearized 

Gompertz model, the Gompertz model provides a better forecast twenty-

six out of fifty times. The skew of the model seems to be more 

important than the error structure underlying that model for 

forecasting ability. 

This result indicates two possible methods for selecting the 

growth curve. If the analyst wishes to fit properly the sample data 

with the model that represents the underlying population, then the 

following procedures could be appropriate. 

1. Plot the linear transformation of data, assuming both the 

logistic model or the version of Gompertz curves, and choose 

the straighter of the two plots. The straighter line 

determines the general form of the model. 

or 

Find a mean estimate error. If the smallest mean estimate 

error is for the Pearl or the linearized Fisher-Pry model, 

the logistic version is chosen. If the Gompertz or the 

linearized Gompertz curve yields the smallest mean estimate 

error, then the Gompertz version is chosen. 
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2. Once the general form of model has been chosen, plot the 

pseudo-residuals of the observed data from their three point 

moving averages. If the plots display a constant variance 

over time, choose the original form of model (i.e., the 

Pearl curve or the Gompertz curve). If the plots display an 

increasing variance over time, choose the transformed model 

(i.e., the linearized Fisher-Pry model or the linearized 

Gompertz curve). 

However, if the analyst is more concerned with the forecasting ability, 

rather than the accuracy of the fitting ability, then following 

procedure could be appropriate. 

1. Plot the linear transformation of data, assuming both the 

logistic model or the version of Gompertz curves, and choose 

the straighter of the two plots. The straighter line 

determines the general form of the model. 

or 

Find a mean estimate error. If the smallest mean estimate 

error is for the Pearl or the linearized Fisher-Pry model, 

the logistic version is chosen. If the Gompertz or the 

linearized Gompertz curve yields the smallest mean estimate 

error, then the Gompertz version is chosen. 

2. If the logistic form of the model has been chosen, the Pearl 

growth curve is utilized to forecast the data. If the 
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Gompertz version of the model has been chosen, the Gompertz 

growth Is utilized to forecast the data. 
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CHAPTER IX. APPLICATION IN LIFE ANALYSIS 

In the previous chapter, procedures for model selection were 

examined by employing simulated time series data. Since the procedures 

have been established using simulated data, it was considered 

worthwhile to test the procedures on real time series data. 

The resultant model, as selected through the procedures, is then 

fitted using discounted least squares and employed to make forecasts on 

real time series data. A proposal for incorporating growth models into 

the traditional life analysis framework is given and demonstrated with 

an example. 

Application of Model Selection 

In choosing the appropriate growth model, the pre-fit diagnostics 

were used to the selection of general form (by choosing the transformed 

plot that appears to represent the straighter line) and error structure 

(by examining the plot of the residuals for constant or increasing 

variance). This implies that the resultant model will be one of the 

four growth curves: Pearl, linearized Fisher-Pry, Gompertz or 

linearized Gompertz. Minimum mean square errors will be employed only 

to confirm the choice of the general form of the growth model. 

Once the appropriate form of the model has been specified, 

discounted least squares is employed to estimate the parameters of that 

model and to forecast that model ahead for several periods. The last 

five data points are set aside in order to test the forecasting ability 
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of the model with five sets of parameters which are derived from five 

levels of discounting (i.e., w=1.00, 0.95, 0.90, 0.80 and 0.70). The 

model is determined to be the best if it provides the minimum forecast 

errors with respect to that actual data points. 

Once the best discount factor is chosen, the final model would be 

the. result of fitting the entire data set using that discount factor. 

The substitution of electronic (stored program control or SPC) for 

electromechnical switching in the telephone industry was chosen to test 

the model selection procedures. Data from ten Bell Operating Companies 

(BOCs) were tested. 

Case study of Company 9 

The data series, which measures the percentage of substitution of 

electronic for electromechnical switching in the telephone Company 9, 

has nineteen observations. Table 32 provides the actual data which 

date from 1967 to 1985. The data range from 0.07 percent to 52.8 

percent, which indicates that the technology is relatively young in its 

growth pattern. 

The first stage of the analysis is the determination of general 

form. The actual time series is fitted onto the linear logistic and 

the linear Gompertz equations. The plots of the transformations are 

provided in Figure 13 (linear logistic plot) and Figure 14 (linear 

Gompertz plot). 
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TABLE 32. Percentage of electronic switching of Company 9 

year % electronic year % electronic 

1967 0.0653 
1968 0.3790 
1969 0.4426 
1970 1.9997 
1971 2.9561 
1972 5.9636 
1973 11.2405 
1974 14.5386 
1975 16.7147 
1976 19.0572 

1977 20 .0954 
1978 26 .2527 
1979 30 .4281 
1980 32 .3323 
1981 35 .5104 
1982 37 .7081 
1983 41 .1211 
1984 47 .4859 
1985 52 .7996 

L(t) t 
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•4 

* * 

•  4 »  — ^  —  M  —  —  ̂  —  —  — »  —  —  —  —  —  —  —  »  —  —  —  
1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 

year 

FIGURE 13. Linear logistic plot for Company 9 
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FIGURE 14. Linear Gompertz plot for Company 9 

A visual inspection of the data indicates that the Gompertz 

transformation results in a straighter line than does the logistic 

transformation. Therefore, the Gompertz version is chosen as the 

appropriate general form of the model. 

For the next stage of the analysis, the plot of pseudo-residuals 

is provided in Figure 15. The plot of the residuals indicates a 

constant variance pattern. This implies that the Gompertz model 

provides the best estimate of the underlying population. The Gompertz 

model is chosen as representative of the population that derives the 

data of the Company 9. 
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FIGURE 15. Residual plot of Company 9 

The mean estimated errors for each of the four growth models as 

applied to the Company 9 time series data are stated in Table 33. For 

the Company 9 data, the Gompertz model has the lowest mean estimate 

error, which confirms the choice made by plots of the linear 

transformations. 

Figure 16 provides the plot of the actual time series data of the 

Company 9 against the four fitted time series. 

Using the nonlinear program that was employed in previous Chapter 

VIII, the Gompertz model is fitted onto the data with the five discount 

119 
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TABLE 33. Mean estimate errors for Company 9 

growth model mean estimate error 

Pearl 5.3764 
Linearized Fisher-Pry 60.3477 
Gompertz 2.4724 
Linearized Gompertz 6.6916 

factors. The parameters estimated from each discount factor are 

provided in Table 34, with five periods ahead forecast (from 1981 to 

1985 year). 

The mean forecast errors calculations indicate that the best model 

uses a discount factor of 0.95. The resultant model is 

ï < t )  =  *  . ( t ) .  

Figure 17 illustrates both the actual data and the best forecasted 

data which employed a discount factor of 0.95. 

Results of other companies 

The nine data series are employed to test the algorithm for 

selecting the appropriate model. The results of the two pre-fit " 

diagnostics and the discount factor for smallest forecasting error are 

provided in Table 35. 

The mean estimate errors for each of the four growth models as 

applied to the nine time series data are stated in Appendix N. This 
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FIGURE 16. Actual vs forecasted with four growth models 
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TABLE 34. Best forecasting model for Company 9 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1981 35.51 38.18 37.62 37.24 37.05 37.66 
1982 37.71 42.33 42.00 41.90 42.43 44.04 
1983 41.12 46.41 46.32 46.48 47.69 50.23 
1984 47.49 50.39 50.52 50.93 52.77 56.09 
1985 52.80 >54.23 54.56 55.20 57.58 61.54 

mean forecast error 13.37 12.45* 13.40 23.72 55.62 

parameter G 5.2705 5.8782 6.6442 8.9729 13.4286 
parameter k 0.1133 0.1196 0.1271 0.1468 0.1747 

* indicates the smallest mean forecast error 

post-fit method (the lowest mean estimate errors is appropriate only in 

choosing the general form of the model) confirms the choice made by the 

plots, except Company 8. The actual data and the forecasted by four 

growth models are plotted in Appendix 0. The parameter estimates from 

each discount factor are provided in Appendix P with forecasts of five 

periods ahead and the mean forecast errors for each level. Appendix Q 

provides the plot of the actual data against the forecasted data with a 

discount factor. 

Note that no one type of model was selected as consistently best. 

This finding implies that consistently employing one type of growth 

model for any technological pattern would provide poorer results than 

following the systematic selection procedures. The range of results 

for choosing the discount factor, indicates that the need to determine 
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FIGURE 17. Actual VS forecasted with a discount factor 
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TABLE 35. Results of pre-flt diagnostics and discount factor 

general pseudo- best discount 
Company form residuals forecast model factor 

1 Logistic constant Pearl 0.95 
2 Gompertz constant Gompertz 0.80 
3 Logistic increasing Pearl 1.00 
4 Gompertz increasing Gompertz 0.70 
5 Logistic constant Pearl 1.00 
6 Gompertz increasing Gompertz 1.00 
7 Logistic increasing Pearl 0.90 
8 Gompertz increasing Gompertz 1.00 
10 Gompertz increasing Gompertz 0.80 

the best factor in forecasting the curve is also a necessary step. 

Consistent usage of only one discount factor, be it large or small, 

would not provide the best forecasts in the long run. 

Remaining Life Obtained From Growth Models 

Depreciation accounting has as its main objective, the recovery of 

the original cost of plant investment less net salvage, over the 

estimated useful life of that plant. Accuracy of the whole life 

technique in meeting this objective depends entirely on the original 

estimates of service life and net salvage for an account. Where the 

whole life technique has been used and original estimates prove 

inaccurate, excessive or deficient accumulations in the depreciation 

reserve frequently occur. To overcome this, the use of the remaining 

life technique has been adopted by many utilities. 



www.manaraa.com

125 

The remaining life technique compensates for prior life and 

salvage estimate inaccuracies by considering the effects of prior rates 

upon the depreciation reserve. This technique utilizes the remaining 

life in calculating the accrual rate for a calendar year. The accrual 

rate for a calendar year is applied to the uncovered cost less net 

salvage of the property at the beginning of the calendar year or it may 

be computed in such a way as to be applicable to the gross plant at the 

beginning of the year. 

The main purpose of doing technological forecasting in life 

analysis is to develop life indicators for specific types of equipment. 

With the growth model selected, the remaining life can be estimated. 

For example, Table 36 gives the substitution of electronic switching as 

forecast by the growth model at one of the telephone companies used in 

this study. 

Assuming the half-year convention, the remaining life at the 

beginning of 1984 can be calculated as: 

i(100.0-84.9)+(100.0-86.5)+...+(100.0-99.7)+(100.0-100.0) 

= 3.89 years. 

The basic equation for the straight-line remaining life accrual 

with the vintage group is 

(100.0-84.9) 

Dx = [(B,. i)(l-Sf) - DR,. J(-^) 
*"x-l 

+ I Cx'(l-S (69) 
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TABLE 36. Percent of electronic switching at Company 3 

year % electronic year % electronic 

1969 2.0 1984 84.9 
1970 3.6 1985 86.5 
1971 5.5 1986 89.8 
1972 9.7 1987 92.4 
1973 13.3 1988 94.4 
1974 16.2 1989 95.8 
1975 20.7 1990 97.0 
1976 24.2 1991 97.8 
1977 31.5 1992 98.4 
1978 41.0 1993 98.8 
1979 47.7 1994 99.2 
1980 52.4 1995 99.4 
1981 59.0 1996 99.6 
1982 67.3 1997 99.7 
1983 79.7 1998 100.0 

where 

= depreciation accrual for calendar year x 

B;.], = vintage balance at beginning of calendar year x 

DR^ _^ = depreciation reserve balance at beginning of 

calendar year x 

RLx_i = remaining life of the vintage at the beginning 

of calendar year x 

= amount installed when x is the year of installation 

PASL = probable average service life of the vintage 

Sf = future net salvage ratio for the vintage 

Sg = average net salvage ratio for the vintage. 



www.manaraa.com

127 

The first term of the equation <69) is equal to zero for the year when 

the property in the vintage is placed in service; in subsequent years, 

this term computes the depreciation charge for the vintage. The second 

term computes the depreciation charge for the year when the property in 

the vintage is placed in service; in subsequent years, this term is 

vanished. 

In addition to the proper adjustment for 100% recovery of capital 

investment, some other advantages of the remaining life technique over 

the whole life technique are 

1. more closely matches capital recovery with consumption 

recognizing that there will normally be changes in estimated 

lives as retirement plans are solidified and future 

conditions are known, 

2. reduce the risk from the results of obsolescence since 

proper capital recovery will more adequately fund 

modernization and replacement programs, 

3. reduce the impact of inflation by improving the allocation 

of recovery over the remaining life of the investment, 

4. reduce revenue requirements in the long run by providing for 

100% capital recovery and reducing the rate base. 
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CHAPTER X. CONCLUSIONS AND RECOMMENDATIONS 

One of the telephone industry's greatest challenges for the 

eighties and beyond might be life estimates for increasingly 

obsolescent plant investments. Recent competitive and technological 

changes during the past decade have accelerated the need for better 

capital recovery methods. Competition and technology have together 

shortened the expected lives of property which could not have been 

forecasted several years ago. 

Since the usagé of technological growth models has been prevalent 

in various technological forecasting environments, the various forms of 

growth models have become numerous. Of six such models studied, some 

models do significantly better than others, especially at low 

penetration levels in predicting future levels of growth, although that 

performance cannot easily be linked to fitting ability. The lack of a 

direct relationship between fitting and forecasting ability implies 

that fitting alone should not be used a priori to select growth models 

for the purpose of forecasting. 

A set of criteria for choosing an appropriate model for 

technological forecasting was developed. Two major characteristics of 

an S-shaped curve were elected which differentiate the various models; 

they are the skew of the curve and the underlying assumptions regarding 

the variance of the error structure of the model. 

If the analyst wishes to fit properly the sample data with the 

model that represents the underlying population, then following the 

procedures would be appropriate. 
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1. Plot the linear transformation of data, assuming both the 

logistic model or the version of Gompertz curves, and choose 

the straighter of the two plots. The straighter line 

determines the general form of the model. 

or 

Find a mean estimate error. If the smallest mean estimate 

error is for the Pearl or the linearized Fisher-Pry model, 

the logistic version is chosen. If the Gompertz or the 

linearized Gompertz curve yields the smallest mean estimate 

error, then the Gompertz version is chosen. 

2. Once the general form of the model has been chosen, plot the 

pseudo-residuals of the observed data from their three point 

moving averages. If the plots display a constant variance 

over time, choose the original form of model (i.e., the 

Pearl curve or the Gompertz curve). If the plots display an 

increasing variance over time, choose the transformed model 

(i.e., the linearized Fisher-Pry model or the linearized 

Gompertz curve). 

However, if the analyst is more concerned with the forecasting ability, 

rather than the accuracy of the fitting ability, then following the 

procedures would be appropriate. 

1. Plot the linear transformation of data, assuming both the 

logistic model or the version of Gompertz curves, and choose 
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the straighter of the two plots. The straighter line 

determines the general form of the model. 

or 

Find a mean estimate error. If the smallest mean estimate 

error is for the Pearl or the linearized Fisher-Pry model, 

the logistic version is chosen. If the Gompertz or the 

linearized Gompertz curve yields the smallest mean estimate 

error, then the Gompertz version is chosen. 

2. If the logistic form of the model has been chosen, the Pearl 

growth curve is utilized to forecast the data. If the 

Gompertz version of the model has been chosen, the Gompertz 

growth is utilized to forecast the data. 

3. Once the population moiel has been chosen, use the discount 

least squares to derive the best estimates of the parameters 

of that model. 

Numerous studies show that a lack of consensus exists among 

analysts as well as a lack of consistency by the same analyst over time 

relative to typical judgments made in the technological forecasting. 

Therefore, successful application of objective decision-making tools in 

any stage of the forecasting would appear to help lessen to some degree 

these inconsistencies. Although the use of statistical techniques 

still require some subjective input and interpretations, the analytical 

procedure provides a more objective basis than would otherwise result. 
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Remaining life technique is suggested to better match the 

challenges of accelerated technology and competition within the 

regulated environment. The flexibility of the remaining life method 

will allow an even better chance to provide a complete recovery of the 

original cost, not more and not less, over the life of the property. 

Although this study includes the theoretical statistical effects 

of continued use of the growth models with assumption violations, 

future research should be undertaken to isolate the effects of the 

violations included in the data sets occurring one at a time and in 

combination. Differing degrees and combinations of the violations 

should be simulated into the data set, and the various results observed 

and analyzed. Future research is necessary to resolve the range of the 

discount factor which would be valid as it ties into the forecasting of 

the growth curve and the different problems of incorporating 

technological forecasting fully into the assumptions of future 

additions and retirements patterns. 
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APPENDIX A. AN ALTERNATE FORM OF THE FISHER-PRY MODEL 

To derive the alternate form of the Fisher-Pry model, begin with 

the form of the equation (3). 

Y = J [1 + tanh a(t - t^ )] 

= 1 [1 + sinh a(t - t.), 
2 cosh a(t - to) 

1 ,, . - t'»!, 

^ 0.5[e°" " - 'o>] 

e«<t - t.) 

gO(t - to)+g-a(t - to) 

then 

eO(t - to) 
1 - Y = 1 - ® 

a(t - to)+g-o(t - to) 

g-o(t - to) 

,a(t - to)+g-a(t - to) 
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It follows that, 

.a(t - to) 

1 - Y ^a{t - to)+g-o(t - to) X 
- to)̂ g-a(t 

_-a(t - t, 

_ gOCt - to) 

Q-a(t - to) 

= gZaCt - to) 
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APPENDIX B. DERIVATION OF THE FISHER-PRY MODEL 

Given the form of the Pearl growth curve. 

I * .«-ft 

if L = 1.0, then 

Ï. 1 
I * a.-"' 

And 

1 - Y = 
1 4. ae'Pt 

It follows that 

X : * 
1 + ..-ft ..-C' 

e" 

When t = tq, in which the new technology captures 50 percents of the 

usage, i.e., Y - 0.5, 

Y _ 0.5 
1 - Y "1-0.5 

= 1.0 
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a 

so, 

a = 

By substitution of a, 

_JL_ . _efl 
1 - ? eft' 

= eP(t - to) 

If let & = 2a, where a is the half 

early years, then, 

the annual fractional growth in the 
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APPENDIX C. DERIVATION OF THE BASS MODEL 

Given the form of the Pearl growth curve, 

r= 
1 f ce"'' 

the Bass model may be obtained by considering the derivative of Y with 

respect to time. It follows that, 

S(t) = 
dt 

[1 + ae-ft]: 

f [—-— — 
^ If ae"*t 1 + ae'Pt 

f Y [L - Y] 

= P Y - 4 y' 

a Co + CjY + c,Y 

where CQ = 0, Ci = P of the Pearl growth curve, and Cj = (-1/L)P of the 

Pearl growth curve for the error free Bass model. 
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APPENDIX D. LIST PROGRAM FOR CALCULATING D-W STATISTIC 

//CURVEl JOB 13583,HYUN,MSGLBVEL=1 
/*JOBPARM LINES=20,BIN=407,DUPLEX=NO,FLASH=NONE 
//SI EXEC SAS,TIME»10 
//INDAT DD DSN-H.13583.CURVEl,UNIT=DISK,DISP=SHR 
//SYSIN DD * 
* 

* READ DATA SET ; 
* • 

DATA CURVEl; 
INFILE INDAT; 
INPUT X Y; 

* • 

* FITTING WITH PEARL CURVE ; 
it • 
DATA PEARL; 
SET CURVEl; 
IF Y>=1.0 THEN Y=0.999999; 
IF Y<=0.0 THEN DELETE; 

PROC NLIN DATA=PEARL ITER=100 BEST=10 METHOD=MARQUARDT; 
PARMS PALPHA=40.774 PBETA=0.1811; 
P1=EXP(-PBETA*X); 
P2=l.0/(1.0+PALPHA*Pl); 

MODEL Y=P2; 
DER.PALPHA=-P1*P2*P2; 
DER.PBETA=PALPHA*X*P1*P2*P2; 
OUTPUT OUT-PEARLO P=PEARLP R=PEARLR; 

* • f 
* CALCULATE DURBIN-WATSON STATISTIC ; 
* • 

DATA SETP; 
SET PEARLO; 
KEEP PEARLR; 

PROC MATRIX; 
FETCH ERROR DATA=SETP; 
SSE=ERROR'"ERROR; 
TEM=ERROR(1:22,)-ERROR(2:23,); 
NUM=TEM'*TEM; 
DWD=NUM#/SSE; 
R=ERROR(1:22,)'*ERROR(2:23,)#/SSE; 

PRINT DWD R; 
* . I 
* FITTING WITH GOMPERTZ CURVE ; 
* . I 
DATA GOMP; 
SET CURVEl; 
IF Y>=1.0 THEN Y=0.999999; 
IF Y<=0.0 THEN DELETE; 
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PROC NLIN DATA«GOMP ITER=100 BEST=10 METHOD>MARQUARDT 
FARMS G0MPG=7.532 GOMPK«0.1254; 
G1=-G0MPK*X; 
G2=EXP(G1); 
G3»-GOMPG*G2; 
G4=EXP(G3); 

MODEL Y=G4; 
DER.G0MPG=-G2*G4; 
DER.G0MPK=G0MPG*X*G2*G4; 
OUTPUT OUT-GOMPO P=GOMPP R=GOMPR; 

* CALCULATE DURBIN-WATSON STATISTIC ; 
* • 

DATA SETG; 
SET GOMPO; 
KEEP GOMPR; 

PROC MATRIX; 
FETCH ERROR DATA=SETG; 
SSE*ERROR'*ERROR; 
TEM=ERROR(1:22,)-ERROR(2:23,); 
NUM=TEM'*TEM; 
DWD=NUM#/SSE; 
R=ERROR(1:22,)'*ERROR(2:23,)#/SSE; 

PRINT DWD R; 
* • 

* FITTING WITH WEIBULL CURVE ; 
* 

9 

DATA WB; 
SET CURVEl; 
IF Y>=1.0 THEN YaO.999999; 
IF Y<=0.0 THEN DELETE; 

PROC NLIN DATA=MB ITER=100 BEST=10 METHOD=MARQUARDT; 
PARMS WALPHA=31.951 WBETA=2.260; 
W1=X/WALPHA; 
W2=W1**WBETA; 
W3=EXP(-W2); 
W4=1.0/WALPHA; 

MODEL Y=1.0-W3; 
DER.WALPHA=-WBETA*W2*W3*W4; 
DER.WBETA=W2*W3*L0G(W1); 
OUTPUT OUT=WBO P=WBP R=WBR; 

* « 
* CALCULATE DURBIN-WATSON STATISTIC ; 
* • I 
DATA SETW; 
SET WBO; 
KEEP WBR; 

PROC MATRIX; 
FETCH ERROR DATA=SETW; 
SSE=ERROR'*ERROR; 
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TEM-ERROR(1:22,)-ERROR(2:23,); 
NUM=TEM'*TEM; 
OWD-NUM#/SSE; 
R-ERROR(1:22,)'*ERROR(2:23,)#/SSE; 

PRINT DWD R; 
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APPENDIX E. LIST OF DATA AND THEIR SOURCES 

The abbreviation HSUS refers to: "Historical Statistics of the 

United States: Colonial Times to 1970." U.S. Bureau of the Census, 

Washington, D.C., 1975. The abbreviation SAUS refers to: "Statistical 

Abstract of the United States: U.S. Bureau of the Census, Washington, 

D.C., various years. 

1. Rayon and nylon for cotton as tire cord in tire manufacture 

(1938-1962). 

Source: F. J. Kovac. "Tire Technology." 5th Ed. The 

Goodyear Tire & Rubber Co., Akron, Ohio, 1978, pp. 153-155. 

2. Nylon, polyester and fiberglass for rayon and cotton as tire 

cord in tire manufacture (1962-1972). 

Source: F. J. Kovac. "Tire Technology." 5th Ed. The 

Goodyear Tire & Rubber Co., Akron, Ohio, 1978, pp. 153-155. 

3. Catalytic and hydro-cracking for thermal cracking in crude 

oil processing (1938-1966). 

Source: see bibliography reference under H. Lakhani. 

4. Steam and motor for sail in the United Kingdom registered 

shipping (1918-1938). 

Source: B. R. Mitchell. "Abstract of British Historical 

Statistics." Cambridge University Press, Cambridge, U.K., 

1962, pp. 217-219. 

5. Percent of underground bituminous coal automatically loaded 

(1923-1970). 
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Source: "Bituminous Coal Facts." National Coal Assoc., 

Washington, D.C., 1972, pp. 53. 

6. Diesel for coal and fuel oil consumption on American 

railroads (1938-1970). 

Source: HSUS, Part II, pp. 783-739. 

7. Percent of independent telephone companies connecting with 

the Bell system (1899-1957). 

Source: HSUS, Part II, pp. 783. 

8. Open hearth for bessemer in raw steel production in the 

United States (1876-1960). 

Source: "Agricultural Statistics." U.S. dept. of 

Agriculture, Washington D.C., various years. 

9. Percentage of U.S. corn acreage planted with corn hybrids 

(1933-1960). 

Source: "Agricultural Statistics." U.S. Dept. of 

Agriculture, Washington, D.C., various years. 

10. Diesel for steam locomotives (1939-1962). 

Source: "Transport Statistics in the U.S." and "Statistics 

of Railroads in the U.S." Interstate Commerce Commission, 

Washington, D.C., various years. 

11. Percentage of Pennsylvania anthracite mined by stripping 

(1927-1976). 

Source: "Minerals Yearbook - Mineral Fuels." 1965, Vol. 

II, for data 1927-1965. For data 1966-1976, "Minerals 
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Yearbook." U.S. Bureau of Mines, Washington, D.C., various 

years. 

Steam and motor for sail in the U.S. Merchant Marine 

(1820-1960). 

Source: HSUS, Part II, pp. 748-750. 

Basic oxygen process for bessemer and open hearth in raw 

steel production in the U.S. (1955-1981). 

Source: W. T. Lankford, Jr. "The Making, Shaping and 

Treatment of Steel." 10th ed. U.S. Steel, Pittsburgh, PA., 

1985, pp.1508. 

Color for B&W television in the United Kingdom (1968-1984). 

Source: "Annual Abstract of Statistics." Central 

Statistics Office, HM's Stationery Office, London, various 

years. 

Percentage of iron ore pelletized in the U.S. (1953-1973). 

Source: "Minerals Yearbook." U.S. Bureau of Mi:ies, 

Washington, D.C., various years. 

Percentage of farm dwelling units with electric service 

(1920-1956). 

Source; HSUS, Part II, pp. 827. 

By-product coke for oven coke in the U.S. (1900-1962). 

Source: E. T. Sheridan and J. A. DeCarlo. "Coal 

Carbonization in the U.S.: 1900-1962." U.S. Bureau of 

Mines Information Circular 8251, 1965, pp. 60. 
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Percentage of households in the U.S. with a television set 

(1946-1980). 

Source: SAUS, various years. 

Percentage of households in the U.S. with a color television 

set (1955-1984). 

Source: SAUS, various years. 

Percentage of households in the U.S. with a radio receiver 

(1927-1970). 

Source: HSUS, Part II, pp. 796. For number of households, 

see HSUS, Part I, pp. 43. 

Percentage of homes in the U.S. with at least a mechanical 

refrigerator (1925-1952). 

Source: J. F. Dewhurst and Associates. "America's Needs 

and Resources: A New Survey." The Twentieth Century Fund, 

New York, 1955, pp. 1041. 

Basic oxygen for bessemer and open hearth pig iron total 

consumption in the U.S. (1957-1984). 

Source: Annual Statistical REport." American iron and 

Steel Institute, New York, various years. 
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APPENDIX F. FITTING ERROR AT EACH PENETRATION LEVEL 

TABLE 37. Mean estimate errors at 5% penetration level 

case LFP LGZ 
models 
LWB PL GZ WB 

1 0.01223 0.00554 0.00143 0 .00519 0.00323 0.00059 
2 0.00000 0.00000 0.00000 0 .00000 0.00000 0.00000 
3 0.10225 0.02912 0.00273 0 .01436 0.00940 0.00245 
4 0.00933 0.00129 0.00095 0 .00266 0.00102 0.00085 
5 0.00665 0.01441 0.01614 0 .00190 0.00510 0.00343 
6 0.00000 0.00000 0.00000 0 .00000 0.00000 0.00000 
7 0.01533 0.02103 0.02274 0 .00677 0.01074 0.00858 
8 0.00012 0.00010 0.00000 0 .00012 0.00010 0.00000 
9 0.00103 0.00080 0.00020 0 .00003 0.00024 0.00009 
10 0.00330 0.00152 0.00055 0 .00236 0.00130 0.00050 
11 0.01346 0.01348 0.01374 0 .01330 0.01340 0.01360 
12 0.02823 0.02826 0.03025 0 .02470 0.02620 0.02660 
13 0.01881 0.00644 0.01116 0 .00900 0.00570 0.00710 
14 0.02155 0.00145 0.00037 0 .00100 0.00010 0.00000 
15 0.01334 0.01214 0.00950 0 .01120 0.01090 0.00810 
16 0.00108 0.00069 0.00065 0 .00090 0.00060 0.00060 
17 0.01474 0.01975 0.01931 0 .01380 0.01530 0.01420 
18 0.00000 0.00000 0.00000 0 .00000 0.00000 0.00000 
19 0.01814 0.00368 0.00001 0, .00060 0.00020 0.00000 
20 0.01990 0.00185 0.00003 0, .00170 0.00030 0.00000 
21 0.01191 0.01291 0.01325 0, .00930 0.01220 0.01020 
22 0.01513 0.01459 0.01565 0, .01410 0.01430 0.01550 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gomportz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 



www.manaraa.com

152 

TABLE 38. Mean estimate errors at 10% penetration level 

case LFP LGZ 
models 
LWB PL GZ WB 

1 0.03455 0.00969 0.00112 0.00866 0.00414 0.00050 
2 0.22212 0.11435 0.05602 0.09964 0.07615 0.03203 
3 0.13494 0.02825 0.07052 0.02176 0.02279 0.03142 
4 0.01022 0.00435 0.00433 0.00244 0.00373 0.00326 
5 0.05459 0.09189 0.09610 0.00855 0.02132 0.01170 
6 0.02740 0.01666 0.01384 0.02266 0.01583 0.01327 
7 0.06476 0.09483 0.10022 0.00699 0.01466 0.00872 
8 0.13344 0.12145 0.07760 0.12262 0.11688 0.07674 
9 0.00890 0.01500 0.00064 0.00015 0.00165 0.03400 
10 0.01448 0.00415 0.00446 0.00720 0.00380 0.d0420 
11 0.06503 0.07042 0.07467 0.04930 0.06000 0.05430 
12 0.11721 0.07691 0.07007 0.09160 0.07260 0.06710 
13 0.04631 0.00575 0.00840 0.00840 0.00540 0.00530 
14 0.05270 0.01784 0.02054 0.00120 0.00790 0.00510 
15 0.12828 0.10963 0.12245 0.11890 0.10200 0.11020 
16 0.00476 0.01237 0.01692 0.00360 0.00970 0.01020 
17 0.47176 0.12028 0.13728 0.07210 0.05500 0.04790 
18 0.00806 0.00441 0.00119 0.00050 0.00060 0.00000 
19 0.01923 0.02165 0.02998 0.00400 0.00820 0.00640 
20 0.01990 0.00185 0.00003 0.00170 0.00030 0.00000 
21 0.00645 0.01051 0.01015 0.00600 0.00780 0.00640 
22 0.02290 0.00976 0.01247 0.01190 0.00940 0.01140 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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TABLE 39. Mean estimate errors at 25% penetration level 

models 
case LFP LGZ LWB PL GZ WB 

1 0 .36894 0.12080 0 .11748 0.17172 0 .11714 0 .11610 
2 0 .26045 0.38305 0 .63486 0.25328 0 .37137 0 .44676 
3 0 .21047 0.09414 0 .29173 0.04892 0 .08601 0 .09575 
4 1 .68377 0.55596 0 .29564 0.42935 0 .33376 0 .23439 
5 0 .12630 0.45140 0 .40429 0.02309 0 .05751 0 .02491 
6 0 .12841 0.06331 0 .01986 0.08111 0 .05247 0 .01890 
7 0 .04964 0.16993 0 .12332 0.03664 0 .02132 0 .02826 
8 0 .17978 0.24008 0 .30124 0.17434 0 .22901 0 .24898 
9 0 .91505 0.01855 0 .11421 0.07383 0 .00857 0 .03400 
10 0 .02982 0.05904 0 .04876 0.02259 0 .05120 0 .03867 
11 0 .32704 6.24372 0 .21875 0.24487 0 .22795 0 .21655 
12 0 .95822 0.54617 0 .37144 0.52367 0 .43203 0 .29199 
13 0 .04022 0.11473 0 .03468 0.01403 0 .05725 0 .02305 
14 0 .26551 0.06961 0 .01111 0.00798 0 .01041 0 .00363 
15 2 .48735 1.00619 1 .32694 1.17363 0 .86023 0 .89379 
16 0, .21170 0.19457 0 .19522 0.18272 0, .19455 0, .19311 
17 2, .52929 0.30349 0 .29992 0.18230 0. .10540 0, .08134 
18 0, .27331 0.04157 0 .08930 0.01791 0. .00438 0, .00655 
19 0, .30120 0.67475 0, .23324 0.20226 0, .11591 0, .20152 
20 1, .97013 0.09416 0. .08827 0.11430 0, .01579 0, .00634 
21 0. .27502 0.02963 0, .09631 0.11811 0. .02930 0, .09743 
22 0, .03080 0.13916 0, .06527 0.02879 0, .09400 0. .04241 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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TABLE 40. Mean estimate errors at 50% penetration level 

case LFP LGZ 
models 
LWB PL GZ WB 

1 3.69468 1.08279 1.67305 1.89527 1.06404 1.38847 
2 4.07384 1.44985 1.41570 2.24166 1.33497 1.26091 
3 0.21965 1.23263 1.29555 0.17174 0.48914 0.26004 
4 1.10743 0.77732 0.96353 0.41338 0.74881 0.66593 
5 0.39657 2.16547 1.38213 0.16472 0.26835 0.19733 
6 1.08283 1.93794 1.60293 0.66565 1.40013 0.74674 
7 1.84549 0.10868 0.94892 0.30886 0.05680 0.22121 
8 0.32269 0.82901 0.86995 0.23358 0.62370 0.38010 
9 4.82002 0.08191 0.77352 0.47547 0.05086 0.15662 
10 0.14765 0.90519 0.62160 0.08252 0.45241 0.15011 
11 0.63931 0.28109 0.30416 0.37720 0.27241 0.29184 
12 1.03151 0.76488 0.85104 0.73974 0.76474 0.78736 
13 0.36282 0.78819 0.20817 0.17669 0.14506 0.19204 
14 4.41249 0.24572 0.94244 0.83646 0.22998 0.48857 
15 6.04469 1.58830 2.17976 2.00264 1.09405 0.91039 
16 0.28037 0.82316 0.32029 0.27636 0.57357 0.29230 
17 3.02609 0.25273 0.25029 0.18395 0.21884 0.19716 
18 4.94099 0.43755 3.52561 0.95216 0.27833 0.56649 
19 2.59713 0.65814 0.90887 0.43791 0.15551 0.40688 
20 5.70878 0.62487 1.17618 0.70447 0.21328 0.12258 
21 0.68464 0.13025 0.11078 0.21217 0.12973 0.09743 
22 0.08743 0.91858 0.49026 0.05371 0.29866 0.08530 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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TABLE 41. Mean estimate errors at 75% penetration level 

models 
case LFP L6Z LWB PL GZ MB 

1 7 .15601 2.36336 3.67231 3.96851 2.26093 2.83688 
2 4 .08234 1.25270 1.24735 2.06589 1.10956 1.01120 
3 0 .28249 2.77837 0.65994 0.27790 0.56840 0.40531 
4 1 .72684 0.67516 0.85764 0.68669 0.58931 0.56791 
5 0 .38282 2.52772 1.26106 0.28193 0.26485 0.38526 
6 3 .28521 1.90938 3.04221 2.69503 1.61057 2.73090 
7 4 .45628 0.47941 1.90795 1.11745 0.47926 0.70552 
8 0 .57547 2.31806 1.51720 0.36401 1.43925 0.50588 
9 8 .26574 0.56065 1.86954 1.63225 0.25676 0.50203 
10 0 .32227 2.71886 0.99563 0.11640 0.94761 0.15311 
11 0, .62607 0.90848 0.74769 0.50772 0.86988 0.66738 
12 0, .84037 1.51619 1.23293 0.72212 1.36977 0.96118 
13 2. .75080 0.87627 1.95286 1.32588 0.45545 1.32911 
14 11, .04635 1.47395 3.70980 2.91608 0.91838 1.32691 
15 4. ,48695 1.23344 0.95608 1.60513 0.99680 0.87802 
16 0. ,60328 2.39403 1.62302 0.49338 1.42866 0.57671 
17 2. ,30497 0.94895 0.77551 0.42943 0.85980 0.61079 
18 6. .47256 0.55576 5.79164 1.51362 0.26211 0.84561 
19 4. .99639 0.52712 2.33924 0.62513 0.13761 0.56415 
20 8. .20880 1.44659 2.82317 2.67443 0.99575 1.02232 
21 6. .03430 2.26356 3.03666 3.91492 2.10141 2.51096 
22 3. 53813 1.24465 2.59840 2.30110 0.98811 2.10834 

Key: LFP = linearized Fisher-Pry model 
LGZ - linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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TABLE 42. Mean estimate errors at 100% penetration level 

models 
case LFP LGZ LWB PL GZ WB 

1 5 .21653 5 .57503 2.43570 3 .10474 2.60882 2.34244 
2 4 .71180 0 .62040 1.76970 1 .18862 0.59549 0.61357 
3 4 .07601 1 .15986 1.15699 1 .96414 1.12989 1.10047 
.4 0 .27829 6 .84939 9.85136 0 .23481 0.69785 0.39368 
5 4 .50413 0 .74751 1.06305 1 .45584 0.70946 1.06306 
6 1 .21003 8 .78509 5.61189 0 .67972 0.59904 0.96473 
7 4 .28618 1 .58202 1.90577 1 .58247 0.78358 1.04956 
8 3 .00954 1 .78947 4.76722 1 .64421 1.45700 1.77105 
9 16 .67182 1 .94497 6.03498 3 .09445 0.81952 1.28062 
10 3 .58012 17 .71217 7.25945 0 .18854 1.53513 0.31300 
11 1 .29810 2 .69920 7.13774 1 .21573 2.30180 2.25530 
12 3 .16856 9 .50664 10.65070 1 .70572 4.07890 2.45530 
13 8 .63899 1 .43380 3.94384 3 .17020 1.08866 2.25936 
14 15 .84705 2 .46771 6.04870 4 .11003 1.34514 1.85003 
15 4 .92750 1 .25029 10.20264 1 .82310 1.03011 0.91661 
16 2 .59194 10 .27577 16.16847 1, .16904 3.37391 1.42204 
17 2 .16336 7 .70913 10.14813 1 .63352 3.36956 2.33802 
18 10, .71234 1 .65592 6.76328 1, .57721 0.42468 0.79218 
19 12. .12109 0 .39238 6.58546 1, .44754 0.32282 1.23112 
20 11, .58502 2 .13464 4.39264 3, .35684 1.24588 1.19470 
21 6. .59566 2 .10090 2.16837 3, .90203 1.98753 2.03572 
22 9, .91564 2 .72964 3.74656 4, .83822 2.14119 2.88503 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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APPENDIX 6. FORECASTING ERROR AT EACH PENETRATION LEVEL 

TABLE 43. Mean forecast errors at 5% penetration level 

case LFP LGZ 
models 
LWB PL GZ WB 

1 • 58.096 4.319 98.577 33.346 12.226 149.659 
2 134.815 35.495 24.301 134.815 35.495 24.301 
3 33.308 62.658 267.214 12.832 138.047 272.717 
4 123.429 10.935 9.551 97.287 7.956 12.952 
5 16.894 218.992 120.614 1.835 113.068 9.632 
6 6.029 83.151 521.688 6.029 83.151 521.688 
7 25.406 62.064 15.617 87.990 2.226 77.204 
8 1.759 44.445 416.669 1.496 45.691 416.611 
9 74.316 2.521 47.412 66.349 3.890 52.760 
10 15.072 56.833 153.135 6.026 65.792 160.033 
11 45.445 91.124 144.854 30.672 84.048 139.440 
12 24.555 34.391 95.617 99.298 7.663 3.426 
13 39.541 29.246 26.223 15.244 40.370 12.847 
14 97.923 4.126 21.686 574.798 8.125 13.250 
15 20.802 67.760 197.301 29.790 118.317 215.572 
16 5.685 59.019 103.902 3.448 61.148 102.894 
17 224.024 42.325 196.499 214.944 65.764 211.124 
18 41.464 1.078 24.273 41.464 1.078 24.273 
19 35.325 96.814 285.834 25.660 194.108 280.930 
20 100.592 28.286 32.057 82.921 22.182 30.395 
21 37.334 11.834 20.707 63.431 3.233 49.436 
22 31.812 18.977 215.954 22.543 24.797 210.656 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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TABLE 44. Mean forecast errors at 10% penetration level 

case LFP LGZ 
models 
LWB PL GZ WB 

1 34.680 13.231 116.033 14.335 28.193 141.054 
2 54.244 1.428 56.684 17.704 8.661 124.994 
3 6.711 86.748 273.713 8.003 109.126 164.091 
4 120.268 14.094 51.880 104.278 17.986 64.473 
5 7.202 170.596 48.790 9.254 25.631 13.250 

. 6 5.246 14.423 19.578 3.116 17.682 25.638 
7 7.954 23.630 22.468 122.330 19.675 137.321 
8 9.313 87.041 383.982 31.182 116.079 391.378 
9 72.154 4.108 62.753 64.054 12.034 66.245 
10 1.156 93.301 132.535 6.253 98.326 123.326 
11 164.156 34.011 119.812 212.517 66.393 200.302 
12 113.771 12.897 9.858 74.979 9.316 5.993 
13 26.304 35.565 10.582 10.818 39.845 11.665 
14 91.321 3.571 29.847 720.277 7.704 54.855 
15 126.669 12.213 103.732 111.549 17.956 104.924 
16 13.046 40.223 38.267 19.614 30.191 12.835 
17 156.362 11.135 47.746 30.927 19.873 22.534 
18 36.423 2.383 36.831 32.305 4.024 34.951 
19 29.599 74.556 41.624 24.343 14.505 17.974 
20 100.592 28.286 32.057 82.921 22.182 30.395 
21 54.916 2.544 34.071 57.404 6.303 44.927 
22 14.712 36.305 77.680 11.368 39.749 63.817 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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TABLE 45. Mean forecast errors at 25% penetration level 

case LFP LGZ 
models 
LWB PL GZ WB 

1 25.398 8.710 5.422 10.433 11.270 5.605 
2 43.930 1.909 29.510 41.275 3.498 4.140 
3 0.295 95.046 202.552 8.073 78.719 55.178 
4 27.636 5.240 39.831 2.915 29.729 89.552 
5 2.431 98.819 12.635 2.154 15.348 13.250 
6 5.104 45.333 179.374 13.531 59.523 193.139 
7 62.767 3.056 49.173 53.824 4.430 66.873 
8 6.293 47.649 68.955 4.436 38.313 32.450 
9 59.400 6.899 47.381 35.820 8.723 35.592 
10 7.944 101.583 57.448 12.455 87.371 37.289 
11 22.053 6.059 31.033 5.374 9.411 34.926 
12 5.506 38.484 93.187 20.806 71.028 141.150 
13 25.427 21.700 18.380 20.064 5.759 25.039 
14 86.383 5.185 56.457 63.567 14.321 63.839 
15 105.157 13.733 66.287 37.434 3.987 12.442 
16 13.626 86.390 85.974 26.966 86.571 78.303 
17 44.436 19.201 10.384 4.811 52.234 66.568 
18 30.773 4.451 32.128 23.387 7.066 27.080 
19 39.185 12.050 42.298 26.681 2.664 40.222 
20 59.450 15.411 26.202 32.645 9.507 16.222 
21 43.841 3.520 35.709 28.521 3.452 26.270 
22 17.061 18.413 18.892 18.521 7.905 24.414 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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TABLE 46. Mean forecast errors at 50% penetration level 

case LFP LGZ 
models 
LWB PL GZ WB 

1 13.616 3.694 7.600 5.150 3.426 3.923 
2 17.610 1.069 2.365 4.997 8.661 4.140 
3 0.333 53.310 30.053 0.635 8.395 1.904 
4 16.297 1.314 2.321 7.127 0.857 3.736 
5 1.128 36.086 2.759 2.490 1.584 6.730 
6 3.498 2.443 3.772 7.895 0.851 11.817 
7 42.821 1.366 46.315 12.900 1.564 66.873 
8 1.634 13.487 6.999 1.181 6.315 1.987 
9 37.303 6.427 27.056 17.430 5.144 15.716 
10 4.345 55.993 15.681 1.380 22.391 0.353 
11 1.608 15.029 24.497 4.427 16.770 20.730 
12 2.561 33.510 41.653 8.406 33.662 28.256 
13 27.597 2.306 33.002 20.360 4.919 30.827 
14 65.006 10.584 49.023 32.418 11.958 31.807 
15 27.891 0.404 5.496 1.613 1.397 2.408 
16 13.757 64.368 10.170 12.149 41.770 5.840 
17 6.163 31.383 18.752 9.161 38.655 24.188 
18 14.038 1.862 14.921 5.235 0.965 5.217 
19 31.836 3.270 31.179 10.510 0.476 18.537 
20 30.118 6.149 15.858 11.934 2.609 3.845 
21 30.454 4.206 17.872 19.132 4.274 15.233 
22 23.773 3.071 23.020 26.700 8.685 34.717 

Key: LFP - linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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TABLE 47. Mean forecast errors at 75% penetration level 

case LFP LGZ 
models 
LWB PL GZ WB 

1 1.138 4.020 0.807 1.138 3.688 1.645 
2 4.691 0.946 1.387 1.613 1.278 1.298 
3 0.124 18.541 0.431 0.128 2.155 1.439 
,4 7.262 0.834 1.421 3.360 0.823 3.055 
5 1.274 19.568 2.618 1.341 1.617 3.917 
6 1.112 0.146 , 1.634 1.090 0.204 1.451 
7 10.288 1.239 8.414 1.163 1.254 1.268 
8 1.061 0.879 1.666 1.841 0.205 3.487 
9 15.894 3.617 12.248 7.694 2.729 5.821 
10 1.693 21.151 1.865 0.427 5.570 0.244 
11 3.171 16.053 14.586 6.108 16.565 10.219 
12 4.703 26.414 20.942 7.895 24.124 10.157 
13 20.545 1.568 23.373 12.581 4.536 16.388 
14 26.666 4.273 20.157 10.006 3.563 5.564 
15 12.653 0.694 0.779 2.589 0.318 0.379 
16 12.002 45.046 29.407 7.814 24.356 4.633 
17 2.597 24.481 16.350 6.147 21.566 8.538 
18 3.956 0.816 5.161 1.941 0.588 2.202 
19 17.968 0.390 20.238 5.108 0.490 9.730 
20 9.867 2.696 8.642 5.707 2.296 3.845 
21 5.165 0.545 2.642 3.038 0.717 0.926 
22 18.843 4.499 20.487 15.571 7.603 17.173 

Key; LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 
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APPENDIX H. RESULTS FOR NORMALITY OF ERROR TERMS 

TABLE 48. Individual test results for normality of error terms 

models 
case LFP LGZ LWB PL GZ WB 

a - levels 
1 0.48 0.39 0.67 0.60 0.09 0.35 
2 0.12 0.29 0.01 * 0.38 0.01 « 0.55 
3 0.02 * 0.30 0.22 0.09 0.04 * 0.31 
4 0.01 * 0.01 Dr 0.01 * 0.03 * 0.15 0.01 it 

5 0.01 * 0.23 0.01 * 0.28 0.08 0.02 * 

6 0.44 0.01 * 0.01 * 0.01 mr 0.36 0.03 * 
7 0.01 Dr 0.18 0.01 •k 0.01 * 0.08 0.01 * 

8 0.06 0.01 * 0.01 •k 0.01 * 0.01 * 0.01 it 

9 0.01 * 0.07 0.04 * 0.02 dr 0.04 * 0.07 
10 0.01 * 0.01 •k 0.44 0.10 0.35 0.09 
11 0.96 0.06 0.01 * 0.16 0.26 0.08 
12 0.01 * 0.01 * 0.01 * 0.01 * 0.01 * 0.01 it 

13 0.03 * 0.58 0.02 * 0.02 * 0.44 0.23 
14 0.35 0.32 0.39 0.06 0.35 0.59 
15 0.49 0.99 0.01 * 0.45 0.74 0.83 
16 0.08 0.01 * 0.03 * 0.03 * 0.02 * 0.06 
17 0.23 0.06 0.02 * 0.02 * 0.13 0.52 
18 0.01 it 0.01 * 0.06 0.71 0.04 it 0.38 
19 0.13 0.42 0.01 * 0.11 0.23 0.54 
20 0.01 H 0.61 0.06 0.02 * 0.01 it 0.01 it 

21 0.15 0.48 0.02 w 0.46 0.13 0.42 
22 0.20 0.06 0.50 0.01 * 0.06 0.09 

-rsmi-

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 

* = Rejection occurs at the a ^ 0.05 level of significance 
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APPENDIX 1. RESULTS FOR HOMOSCEDASTICITY OF ERROR TERMS 

TABLE 49. Individual test results for homoscedasticity 

models 
case LFP LGZ LWB PL GZ WB 

F - statistic • 
1 1.14 8.43 * 1.96 1.63 1.03 1.28 
2 3.13 1.70 45.79 « 3.77 it 14.86 * 9.26 ' # 

3 4.11 * 2.17 4.22 Hr 3.11 1.94 1.40 
4 6.34 w 2.48 it 11.64 * 1.43 1.04 1.10 
5 2.92 * 5.86 * 5.57 * 1.44 1.19 1.01 
6 2.69 3.56 it 30.43 * 13.39 * 2.44 9.37 it 

7 1.39 6.67 it 17.90 * 59.91 * 30.97 * 41.69 it 

8 1.69 2.12 it 43.60 * 29.55 * 38.69 * 38.30 it 

9 79.40 * 1.28 42.37 * 16.40 « 1.95 4.42 it 

10 24.15 it 50.60 it 30.57 * 1.58 1.20 9.27 it 

11 1.62 4.99 it 2.99 H 6.91 « 9.97 it 5.49 it 

12 2.21 it 5.52 it 13.38 * 1.16 2.91 it 1.40 
13 1.66 1.07 32.80 * 35.01 * 3.62 H 8.24 it 

14 199.15 it 9.35 * 209.02 * 17.73 * 10.14 it 16.59 it 

15 12.54 it 1.49 17.44 * 1.42 1.01 1.24 
16 1.97 24.31 * 4.44 * 6.82 « 13.06 it 3.44 it 

17 11.52 it 29.45 it 3.19 * 15.81 * 7.94 H 3.64 it 

18 1.85 18.36 it 5.78 * 106.99 « 16.25 it 31.95 it 

19 32.40 it 5.84 H 235.50 * 3.10 4.73 it 5.14 it 

20 21.50 it 1.12 16.08 * 20.23 * 6.91 it 7.12 it 

21 1.40 34.00 it 3.25 8.49 * 18.14 it 15.94 it 

22 2.06 1.88 59.51 * 1.04 1.02 1.18 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 

* = Rejection occurs when F(nl, n2, 0.05) < F-statistic 
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APPENDIX J. RESULTS FOR NONAUTOCORRELATION 

TABLE 50. Individual test results for nonautocorrelatlon 

models 
case LFP LGZ LWB PL GZ WB 

Durbin-Watson statistic 
1 0.85 * 0.58 if 1.10 * 1.29 1.27 1.43 
2 0.23 * 0.89 * 0.44 it 0.58 •k 1.07 * 1.05 * 

3 0.25 * 0.42 * 0.70 it 0.35 * 0.57 * 0.58 Hr 

4 0.14 « 0.01 * 0.09 it 0.18 it 0.06 it 0.11 * 

5 0.11 * 0.22 * 0.35 it 0.13 it 0.26 it 0.18 * 
6 1.06 mr 0.29 Dr 0.22 it 1.00 it 1.12 it 0.76 * 

7 0.15 * 0.33 * 0.40 it 0.28 it 0.49 it 0.40 * 
8 0.27 « 0.31 * 0.14 it 0.88 * 0.85 it 0.68 « 

9 0.12 * 0.12 * 0.15 it 0.11 * 0.18 it 0.17 « 

10 0.25 * 0.17 * 0.20 it 0.28 it 0.13 it 0.24 « 

11 0.76 n 0.36 Hr 0.25 it 1.26 it 0.51 * 0.57 * 
12 0.15 K 0.04 it 0.11 it 0.21 it 0.10 it 0.15 H 
13 0.13 « 0.31 * 0.60 it 0.15 it 0.31 it 0.21 * 
14 0.24 •k 0.19 it 0.23 it 0.21 it 0.32 it 0.31 « 

15 0.51 w 1.32 1.94 0.92 it 1.57 1.75 
16 0.09 * 0.05 it 0.12 * 0.15 it 0.08 it 0.12 it 

17 0.88 * 0.38 it 0.25 * 1.26 it 0.63 it 0.89 * 
18 0.33 * 0.69 it 0.22 * 0.23 it 0.40 it 0.30 m 
19 0.38 * 0.85 it 0.75 * 0.48 it 1.90 0.56 * 
20 0.24 * 0.54 it 0.27 it 0.21 * 0.45 it 0.48 Dr 

21 0.18 * 0.51 it 0.95 it 0.24 * 0.43 it 0.42 H 
22 0.15 * 0.23 it 0.35 it 0.13 it 0.22 it 0.19 It 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
LWB = linearized Weibull growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
WB = Weibull growth curve 

* = Rejection occurs when D-W statistic < d^ or 
when D-W statistic > 4-dc. 
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APPENDIX K. VARIANCE OF ERROR TERMS 

TABLE 51. Individual variance of error terms 

models 
case LFP LGZ PL GZ 

1 0.2292160 0.0525357 0.0029417 0.0024465 
2 0.2975730 0.0130950 0.0010470 0.0005711 
3 0.2554270 0.0293741 0.0017589 0.0010870 
4 0.1008040 0.1355550 0.0002318 0.0005311 
5 0.3204550 0.0367397 0.0012221 0.0006940 
6 0.0877781 0.2976250 0.0006161 0.0005329 
7 0.3864110 0.1371680 0.0013586 0.0007593 
8 0.1274400 0.0747629 0.0014856 0.0014323 
9 1.0046100 ' 0.0357771 0.0024237 0.0006864 
10 0.3841428 0.7633370 0.0001275 0.0010039 
11 0.0529496 0.0349301 0.0011847 0.0021862 
12 0.1442540 0.2119620 0.0015687 0.0035691 
13 0.3668930 0.0224309 0.0026228 0.0010121 
14 0.8804420 0.0320668 0.0034421 0.0011714 
15 0.3385020 0.0166305 0.0016682 0.0009756 
16 0.1112850 0.2066290 0.0009711 0.0026270 
17 0.0941606 0.1649800 0.0015493 0.0028344 
18 0.9171340 0.2163360 0.0010380 0.0002875 
19 1.2202200 0.0240050 0.0011578 0.0003067 
20 0.7623390 0.0550025 0.0027035 0.0010732 
21 0.2310750 0.0338791 0.0035234 0.0018849 
22 0.3100070 0.0362644 0.0040943 0.0019637 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
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APPENDIX L. SCALE OR INTERCEPT PARAMETER 

TABLE 52. Individual scale or intercept parameter 

models 
case LFP LGZ PL GZ 

1 -4.484549 -2.468645 31.233786 7.213293 
2 -5.533922 -2.157066 54.967555 8.886245 
3 -3.086024 -1.443972 15.035815 4.219136 
4 -5.649673 -2.499071 305.675021 35.444588 
5 -3.897951 -1.805320 29.198135 6.613107 
6 -6.545642 -3.064132 507.521821 49.148946 
7 -2.482421 -1.329700 20.122877 5.484244 
8 -2.915803 -1.615880 25.322259 6.221314 
9 -4.161412 -1.753934 19.587539 5.255510 
10 -5.222297 -2.886377 192.345570 26.500924 
11 -3.216227 -1.446504 22.830711 4.605687 
12 -3.909521 -1.962871 47.057550 8.228604 
13 -5.109756 -2.046338 47.271740 9.094102 
14 -5.115401 -1.940510 23.800895 5.694928 
15 -3.901465 -1.604261 18.390183 4.339082 
16 -4.451384 -2.095253 162.042527 20.037088 
17 -3.611650 -1.938400 47.521007 9.327611 
18 -2.829723 -1.410079 21.057380 5.342873 
19 -8.152847 -2.735915 134.605244 17.638173 
20 -2.988615 -1.344400 11.921693 3.867563 
21 -3.279234 -1.465643 14.482676 4.192919 
22 -3.722765 -1.616986 21.105145 5.526387 

Key; LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
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APPENDIX M. SHAPE OR SLOPE PARAMETER 

TABLE 53. Individual shape or slope parameter 

models 
case LFP LGZ PL GZ 

1 0.43870464 0 .32435529 0.35119117 0.24990061 
2 0.30972490 0, .15167074 0.23189589 0.15219363 
3 0.21321582 0, .14209824 0.20522847 0.14345075 
4 0.08287913 0, .04822931 0.08460480 0.05951213 
5 0.15703515 0, .10083954 0.14976016 0.10385738 
6 0.37132370 0. .23263003 0.36374133 0.25422221 
7 0.17360722 0. .14034324 0.23119534 0.16590052 
8 0.08564683 0. .06685287 0.10161739 0.07145905 
9 0.29242052 0. ,17844120 0.25784213 0.18295178 
10 0.42054041 0. 30112853 0.39113670 0.27792421 
11 0.09445175 0. 05585878 0.09072801 0.05625309 
12 0.05832573 0. 03886742 0.05423985 0.03613516 
13 0.20193767 0. 15153638 0.24053554 0.16546877 
14 0.45916711 0. 22655788 0.31506374 0.21729011 
15 0.27655397 0. 14776453 0.21243174 0.13835071 
16 0.18485122 0. 11238403 0.20131800 0.13632655 
17 0.19448020 0. 13963656 0.19991890 0.13914457 
18 0.33333540 0. 25851340 0.45430408 0.31692628 
19 0.39927461 0. 16936198 0.26180950 0.17760933 
20 0.22075314 0. 15226814 0.22717380 0.16471168 
21 0.20621697 0. 12744141 0.18226587 0.12795654 
22 0.23831202 0. 14188159 0.21948786 0.15494606 

Key: LFP = linearized Fisher-Pry model 
LGZ - linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
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APPENDIX N. MEAN ESTIMATE ERRORS FOR TELEPHONE DATA 

TABLE 54. Mean estimate errors for telephone data 

model 
Company LFP LGZ PL GZ 

1 1.2837 9.5399 0.8-790 2.2203 
2 6.1337 0.9857 2.9605 0.9036 
3 2.6101 2.9804 1.2705 2.4409 
4 8.1380 2.2709 4.1044 1.8304 
5 3.8114 6.5298 3.0456 6.2336 
6 10.4270 2.8495 1.1966 0.4199 
7 0.9313 21.7421 0.7362 0.9867 
8 10.6265 10.1376 2.0702 5.5130 
10 21.4708 1.2645 2.9117 1.2100 

Key: LFP = linearized Fisher-Pry model 
LGZ = linearized Gompertz growth curve 
PL = Pearl growth curve 
GZ = Gompertz growth curve 
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APPENDIX 0. ACTUAL VS FORECASTED WITH 4 MODELS 

o 
o 

o 
wO 

Company 1 
Actual data 
LFP model 
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FIGURE 18. Actual vs forecasted for Company 1 
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FIGURE 19. Actual vs forecasted for Company 2 
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FIGURE 20. Actual VS forecasted for Company 3 
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FIGURE 21. Actual vs forecasted for Company 4 
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FIGURE 22. Actual VS forecasted for Company 5 
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FIGURE 23. Actual vs forecasted for Company 6 
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FIGURE 24. Actual VS forecasted for Company 7 



www.manaraa.com

176 

Company 8 
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FIGURE 25. Actual vs forecasted for Company 8 
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FIGURE 26. Actual VS forecasted for Company 10 
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APPENDIX P. BEST MODEL WITH DISCOUNT FACTORS 

TABLE 55. Best forecasting model for Company 1 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1980 45.38 43.91 44.04 44.32 45.33 47.01 
1981 52.08 50.13 50.85 51.77 54.30 57.81 
1982 56.08 56.34 57.63 59.15 63.00 67.92 
1983 63.97 62.36 64.13 66.14 70.93 76.59 
1984 73.25 68.02 70.15 72.49 77.76 83.48 

mean forecast error 7.20 3.07* 3.19 24.29 87.90 

parameter a 32.9024 44.4308 61.5051 129.5834 322.1856 
parameter b 0.2499 0.2734 0.2993 0.3598 0.4350 

* indicates the smallest mean forecast error 

TABLE 56. Best forecasting model for Company 2 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1980 45.39 44.50 44.25 44.09 44.08 44.52 
1981 54.28 49.60 49.65 49.83 50.60 51.98 
1982 58.52 54.48 54.81 55.30 56.75 58.91 
1983 61.66 59.09 59.67 60.42 62.43 65.18 
1984 66.60 63.40 64.19 65.14 67.58 70.75 

mean forecast error 11.20 9.27 7.12 3.99* 7.16 

parameter G 5.2417 5.9076 6.7183 8.9925 12.7936 
parameter k 0.1436 0.1523 0.1619 0.1843 0.2124 

* indicates the smallest mean forecast error 
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TABLE 57. Best forecasting model for Company 3 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1980 52.39 55.89 56.29 56.81 58.25 60.19 
1981 59.00 63.63 64.65 65.82 68.66 72.07 
1982 67.35 70.75 72.21 73.82 77.47 81.49 
1983 79.67 76.97 78.68 80.51 84.37 88.25 
1984 84.90 82.20 83.98 85.81 89.44 92.76 

mean forecast error 11.99* 14.51 21.92 54.56 113.41 

parameter a 38.2041 52.4425 73.8497 160.4236 402.8773 
parameter b 0.3232 0.3510 0.3813 0.4509 0.5343 

* indicates the smallest mean forecast error 

TABLE 58. Best forecasting model for Company 4 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1980 46.99 45.86 45.28 44.82 44.55 45.24 
1981 49.91 49.65 49.38 49.29 49.84 51.63 
1982 61.55 53.33 53.36 53.59 54.91 57.64 
1983 62.23 56.86 57.17 57.70 59.68 63.18 
1984 62.80 60.23 60.79 61.58 64.11 68.20 

mean forecast error 20.91 20.03 18.10 11.68 10.29* 

parameter G 3.1570 3.5987 4.1288 5.6521 8.4772 
parameter k 0.1078 0.1163 0.1260 0.1496 0.1822 

indicates the smallest mean forecast error 
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TABLE 59. Best forecasting model for Company 5 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1980 53.71 54.41 55.12 55.90 57.66 59.68 
1981 56.53 63.59 64.97 66.43 69.59 72.99 
1982 63.80 71.88 73.69 75.55 79.36 83.16 
1983 71.24 78.91 80.88 82.83 86.59 90.02 
1984 72.56 84.56 86:47 88.28 91.56 94.27 

mean forecast error 63.73 91.46 124.49 204.94 301.06 

parameter a 37.8484 50.2438 67.8865 131.4717 278.9968 
parameter b 0.3810 0.4122 0.4455 0.5188 0.6023 

* indicates the smallest mean forecast error 

TABLE 60. Best forecasting model for Company 6 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1981 46.66 48.51 48.58 48.73 49.27 50.13 
1982 51.13 55.57 55.98 56.49 57.83 59.63 
1983 57.99 62.05 62.73 63.53 65.47 67.90 
1984 60.39 67.87 68.75 69.74 72.06 74.84 
1985 67.96 72.99 73.99 75.10 77.61 80.50 

mean forecast error 24.14* 31.17 40.38 67.38 109.67 

parameter G 13.3063 15.3830 18.0060 25.7862 39.7327 
parameter k 0.2080 0.2185 0.2300 0.2568 0.2895 

* indicates the smallest mean forecast error 
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TABLE 61. Best forecasting model for Company 7 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1981 41.37 40.03 40.34 40.80 42.15 44.10 
1982 50.19 47.25 48.18 49.33 52.32 56.25 
1983 59.22 54.59 56.11 57.89 62.29 67.69 
1984 67.20 61.73 63.73 66.01 71.32 77.34 
1985 72.87 68.40 70.73 73.29 78.93 84.76 

mean forecast error 16.35 6.28 0.88* 13.64 71.99 

parameter a 123.3889 175.2086 257.9886 636.1495 922.7729 
parameter b 0.2941 0.3183 0.3454 0.4093 0.4883 

* indicates the smallest mean forecast error 

TABLE 62. Best forecasting model for Company 8 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1981 59.05 57.18 57.62 58.21 59.87 62.12 
1982 62.43 64.03 64.88 65.92 68.56 71.87 
1983 66.90 70.07 71.21 72.54 75.75 79.52 
1984 72.05 75.30 76.61 78.09 81.52 85.30 
1985 79.02 79.74 81.13 82.66 86.04 89.56 

mean forecast error 5.42* 10.37 18.88 51.11 108.86 

parameter G 16.5745 20.9021 27.1574 51.1629 114.6886 
parameter k 0.2260 0.2423 0.2610 0.3068 0.3656 

* indicates the smallest mean forecast error 
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TABLE 63. Best forecasting model for Company 10 

discount factor 
year actual 1.00 0.95 0.90 0.80 0.70 

1981 51.74 51.26 50.96 50.84 . 51.17 52.33 
1982 57.44 56.75 56.77 57.00 58.20 60.46 
1983 61.41 61.86 62.15 62.69 64.59 67.64 
1984 70.74 66.55 67.07 67.84 70.25 73.81 
1985 76.95 70.80 71.49 72.45 75.18 78.98 

mean forecast error 11.26 8.98 6.26 2.87* 12.38 

parameter G 7.9445 9.2200 10.9088 16.4715 28.5369 
parameter k 0.1650 0.1744 0.1854 0.2135 0.2524 

* indicates the smallest mean forecast error 
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APPENDIX Q. FORECASTED WITH A DISCOUNT FACTOR 
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FIGURE 27. Forecasted with w=0.95 for Company 1 
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FIGURE 28. Forecasted with w=0.80 for Company 2 
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FIGURE 29. Forecasted with w=0.70 for Company 4 
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FIGURE 30. Forecasted with w=0.90 for Company 7 
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FIGURE 31. Forecasted with w=0.80 for Company 10 


	1988
	The selection of technological forecasting models in life analysis
	Hyun-Seung Oh
	Recommended Citation


	tmp.1416277000.pdf.AsXH6

